CHAPTER 23

Dynamic Transport Services

Michal Maciejewski

Entry point to documentation:
http://matsim.org/extensions — dvrp
Invoking the module:

No predefined invocation. Starting point(s) under http://matsim.org/javadoc — dvrp —
RunOneTaxiExample class.

Selected publications:
Maciejewski and Nagel (2013b,c¢,a); Maciejewski (2014)

23.1 Introduction

The recent technological advancements in ICT (Information and Communications Technology)
provide novel, on-line fleet management tools, opening up a broad range of possibilities for more
intelligent transport services: flexible, demand-responsive, safe and energy/cost efficient. Signifi-
cant enhancements can aid in both traditional transport operations, like regular public transport
or taxis and introduction of novel solutions, such as demand-responsive transport or personal rapid
transport. However, the growing complexity of modern transport systems, despite all benefits,
increases the risk of poor performance, or even failure, due to lack of precise design, implementa-
tion and testing.

One solution is to use simulation tools offering a wide spectrum of possibilities for validating
transport service models. Such tools have to model, in detail, not only the dynamically chang-
ing demand and supply of the relevant service, but also traffic flow and other existing transport
services, including mutual interactions/relations between all these components. Although several
approaches have been proposed (e.g., Regan et al., 1998; Barcelo et al., 2007; Liao et al., 2008;

How to cite this book chapter:

Maciejewski, M. 2016. Dynamic Transport Services. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)
The Multi-Agent Transport Simulation MATSim, Pp. 145-152. London: Ubiquity Press. DOI: http://
dx.doi.org/10.5334/baw.23. License: CC-BY 4.0



[46 The Multi-Agent Transport Simulation MATSIm

Certicky etal., 2014), as far the author knows, no existing solutions provide large-scale microscopic
simulation that include all the components above.

23.2 DVRP Contribution

To address the problem above, MATSim’s DVRP (Dynamic Vehicle Routing Problem) contribution
has been developed. The contribution is designed to be highly general and customizable to model
and simulate a wide range of dynamic vehicle routing and scheduling processes. Currently, the
domain model is capable of representing a wide range of one-to-many and many-to-many VRPs;
one can easily extend the model even further to cover other specific cases (see Section 23.3). Since
online optimization is the central focus, the DVRP contribution architecture allows plugging in
of various algorithms. At present, there are several different algorithms available, among them an
algorithm for the Dynamic Multi-Depot Vehicle Routing Problem with Time Windows and Time-
Dependent Travel Times and Costs, analyzed in (Maciejewski and Nagel, 2012), and a family of
algorithms for online taxi dispatching, studied in (Maciejewski and Nagel, 2013b,c,a; Maciejewski,
2014).

The DVRP contribution models both supply and demand, as well as optimizing fleet operations,
whereas MATSim’s core is used for simulating supply and demand, both embedded into a large-
scale microscopic transport simulation. In particular, the contribution is responsible for:

* modeling the DVRP domain,

* listening to simulation events,

* monitoring the simulation state (e.g., movement of vehicles),

« finding least-cost paths,

* computing schedules for drivers/vehicles,

* binding drivers’ behavior to their schedules, and

* coordinating interaction/cooperation between drivers, passengers and dispatchers.

Dynamic transport services are simulated in MATSim as one component of the overall trans-
port system. The optimizer plugged into the DVRP contribution reacts to selected events generated
during simulation, which could be: request submissions, vehicle departures or arrivals, etc. Addi-
tionally, it can monitor the movement of individual vehicles, as well as query other sources of online
information, e.g., current traffic conditions. In response to changes in the system, the optimizer
may update drivers’ schedules, either by applying smaller modifications or re-optimizing them
from scratch. Drivers are notified about changes in their schedules and adjust to them as soon as
possible, including immediate diversion from their current destinations. For passenger transport,
such as taxi or demand-responsive transport services, interactions between drivers, passengers
and the dispatcher are simulated in detail, including calling a ride or picking up and dropping oft
passengers.

23.3 DVRP Model

The DVRP contribution can be used for simulating Rich VRPs. Compared to the classic Capacitated
VRP, the major model enhancements are:

* one-to-many (many-to-one) and many-to-many topologies,
* multiple depots,

* dynamic requests,

e request and vehicle types,

* time windows for requests and vehicles,



Dynamic Transport Services 147

* time-dependent stochastic travel times and costs, and
* network-based routing (including route planning, vehicle monitoring and diversion).

Except for the travel times and costs (discussed in Section 23.3.2), which are calculated on de-
mand, all the VRP-related data are accessible via VrpData.' In the most basic setup, there are only
two types of entities, namely Vehicles and Requests. This model, however, can be easily extended as
required. For instance, for an electric vehicle fleet, specialized ElectricVrpData also stores informa-
tion about Chargers. This, and other examples of extending the base VRP model, such as a model
of the VRP with Pickup and Delivery, are available in the org.matsim.contrib.dvrp.extensions
package.

23.3.1 Schedule

Each Vehicle has a Schedule, a sequence of different Tasks, such as driving from one location to
another (DriveTask), or staying at a given location (e.g., serving a customer or waiting; StayTask).”
A Schedule is where supply and demand are coupled. All schedules are calculated by an online
optimization algorithm (see Section 23.6) representing the fleet’s dispatcher. Each task is in one of
the following states (defined in the Task.TaskStatus enum): PLANNED, STARTED or PERFORMED; each
schedul€’s status is one of the following:

* UNPLANNED—no tasks assigned

* PLANNED—all tasks are PLANNED (none of them started)

* STARTED—one of the tasks is STARTED (this is the schedule’s currentTask; the preceding tasks are
PERFORMED and the succeeding ones are PLANNED)

* COMPLETED—all tasks are PERFORMED

In general, when modifying a Schedule, one can freely change and rearrange the planned tasks;
those performed are considered to be read-only. For the current task, one can, for instance, change
its end time, although the start time must remain unchanged. Proceeding from the current task to
the next one is carried out by invoking the Schedule.nextTask()) method.

The execution of the current task may be monitored with a TaskTracker.? In the most basic ver-
sion, trackers predict only the end time of the current task. More complex trackers also provide
detailed information on the current state of task execution. OnlineDriveTaskTracker, for exam-
ple, offers functionality similar to GPS navigation, such as monitoring the movement of a vehicle,
predicting its arrival time and even diverting its path.

ScheduleImpl, along with DriveTaskImpl and StayTaskImpl, is the default implementation of
Schedule and offers several additional features, such as data validation or automated task han-
dling. It also serves as the starting point when implementing domain-specific schedules or tasks
(e.g., ChargeTask in the electric VRP model mentioned above).

23.3.2 Least-Cost Paths

MATSim’s network model consists of nodes connected by one-way links. Because of the queue-
based traffic flow simulation (Section 1.3), a link is the smallest traversable element (i.e., a vehicle
cannot stop in the middle of a link). Besides links, the DVRP contribution also operates on a higher
level of abstraction: paths. Each path is a sequence of links to be traversed to get from one location

T Package org.matsim.contrib.dvrp.data.
2 Ppackage org.matsim.contrib.dvrp.schedule.
3 Package org.matsim.contrib.dvrp.tracker.



48 The Multi-Agent Transport Simulation MATSIm

to another in the network, or more precisely, from the end of one link end to the end of another
link.

The functionality of finding least-cost paths is available in the org.matsim. contrib.dvrp.router
package. VrpPathCalculator calculates VrpPaths by means of the least-cost path search algorithms
available in MATSim’s core (Jacob et al., 1999; Lefebvre and Balmer, 2007).* Because of changing
traffic conditions, paths are calculated for a given departure time. Since MATSim calculates average
link travel time statistics for every 15 minutes time period by default, the 15 minutes time bin is
also used for computing shortest paths.

VrpPaths are used by DriveTasks to specify the link sequence to be traversed by a vehicle be-
tween two locations. It is possible to divert a vehicle from its destination by replacing the currently
followed VrpPath with a DivertedVrpPath.

To reduce computational burden, the already calculated paths can be cached for future reuse
(see VrpPathCalculatorWithCache). However, when calculating least-cost paths from one location
to many potential destinations, a significant speed-up can be achieved by means of least-cost tree
search (see org.matsim.utils.LeastCostPathTree).

23.4 DynAgent

Contrary to the standard day-to-day learning in MATSim (but see also Section 97.3.5), in the
DVRP contribution, each driver behaves dynamically and follows orders coming continuously
from the dispatcher. The DynAgent class, along with the org.matsim.contrib.dynagent package,
provides the foundation for simulating dynamically behaving agents. Although created for DVRP
contribution needs, DynAgent is not limited to this context and can be used in a wide range of
different simulation scenarios where agent dynamism is required.

DynAgent’s main concept assumes an agent can actively decide what to do at each simulation
step instead of using a pre-computed (and occasionally re-computed; see 30.4.2) plan. It is up
to the agent whether decisions are made spontaneously or (re-)planned in advance. In some
applications, a DynAgent may represent a fully autonomous agent acting according to his/her de-
sires, beliefs and intentions, whereas in other cases, it may be a non-autonomous agent following
orders systematically issued from the outside (e.g., a driver receiving tasks from a centralized
vehicle dispatching system).

23.4.1 Main Interfaces and Classes

The DynAgent class is a dynamic implementation of MobsimDriverPassengerAgent. Instead of ex-
ecuting pre-planned Activitys and Legs, a DynAgent performs DynActivitys and DynLegs. The
following assumptions underlie the agent’s behavior:

* The DynAgent is the physical representation of the agent, responsible for the interaction with
the real world (i.e., traffic simulation).

* The agent’s high-level behavior is controlled by a DynAgentLogic that can be seen as the agent’s
brain; the DynAgentLogic is responsible for deciding on the agent’s next action (leg or activity),
once the current one has ended.

* Dynamic legs and activities fully define the agents low-level behavior, down to the level of a
single simulation step.

At the higher level, the DynAgent dynamism results from the fact that dynamic activities and legs
are usually created on the fly by the agents DynAgentLogic; thus, the agent does not have to plan

4 Package org.matsim.core.router.



Dynamic Transport Services 149

future actions in advance. When the agent has a roughly detailed legs and activities plan, he/she
does not have to adhere to it and may modify his/her plan at any time (e.g., change the mode or
destination of a future leg, or include or omit a future activity).

Low-level dynamism is provided by the execution of dynamic activities and legs. As for the cur-
rently executed activity, the agent can shorten or lengthen its duration at any time. Additionally, at
each time step, the agent may decide what to do right now (e.g., communicate with other agents, re-
plan the next activity or leg, and so on). When driving a car (DriverDynLeg), the agent can change
the route, destination or even decide about picking up or dropping off somebody on the way. When
using public transport (PTPassengerDynLeg), the agent chooses which bus to get on and at which
stop to exit.

Incidentally, the behavior of MATSim’s default plan-based agent, PersonDriverAgentImpl, canbe
simulated by DynAgent, combined with the PlanToDynAgentLogicAdapter logic. This adapter class
creates a series of dynamic activities and legs that mimics a given Plan of static Activity and Leg
instances.

23.4.2 Configuring and Running a Dynamic Simulation

DynAgent has been written for and validated against QSim. Dynamic leg simulation requires no addi-

tional code. However, to take advantage of dynamic activities, DynActivityEngine should be used,

instead of ActivityEngine. The doSimStep(double time) method of DynActivityEngine ensures

that dynamic activities are actively executed by agents and that their end times can be changed.
The easiest way to run a single iteration of QSim is as follows:

Create and initialize a Scenario,

2. call DynAgentLauncherUtils’ initQSim(Scenario scenario) method to create and initialize a
Qsim; this includes creating a series of objects, such as an EventsManager, DynActivityEngine,
or TeleportationEngine,

add AgentSources of DynAgents and other agents to the QSim,
4. run the QSim simulation, and

finalize processing events by the EventsManager.

Depending on needs, the procedure above can be extended with additional steps, such as adding
non-default engines or departure handlers to the QSim.

23.4.3 RandomDynAgent Example

The org.matsim.contrib.dynagent.examples.random package contains a basic illustration of how
to create and run a scenario with DynAgents. To highlight differences with plan-based agents, in
this example 100 dynamic agents travel randomly (RandomDynLeg) and perform random duration
activities (RandomDynActivity).

High-level random behavior is controlled by RandomDynAgentLogic, that operates according to
the following rules:

1. Each agent starts with a RandomDynActivity; see the computeInitialActivity(DynAgent
agent) method.

2. Whenever the currently performed activity or leg ends, a random choice on what to do next
is made between the following options: (a) stop being simulated by starting a determinis-
tic StaticDynActivity with infinite end time, (b) start a RandomDynActivity, or (c) start a
RandomDynLeg; see the computeNextAction(DynAction oldAction, double now) method.



50 The Multi-Agent Transport Simulation MATSIm

The lower level stochasticity results from random decisions being made at each consecutive de-
cision point. In the case of RandomDynLeg, each time an agent enters a new link, he or she decides
whether to stop at this link or to continue driving; in the latter case, the subsequent link is cho-
sen randomly; see the RandomDynLeg(Id<Link> fromLinkId, Network network) constructor and
the movedOverNode (Id<Link> newLinkId) method. As for RandomDynActivity, at each time step the
doSimStep(double now) method is called and a random decision is made on the activity end time.

Following the rules specified in Section 23.4.2, setting up and running this example sce-
nario is straightforward. RandomDynAgentLauncher reads a network, initializes a QSim, then adds
a RandomDynAgnetSource to the QSim, and finally, launches visualization and starts simulation. The
RandomDynAgentSource is responsible for instantiating 100 DynAgents that are randomly distributed
over the network. The simulation ends when the last active agent becomes inactive.

23.5 Agentsin DVRP

Realistic simulation of dynamic transport services requires a proper model of interactions and
possible collaborations between the main actors: drivers, customers (often passengers) and the
dispatcher. By default, drivers and passengers are simulated as agents, while the dispatcher’s deci-
sions are calculated by the optimization algorithm (see Section 23.6). This, however, is not the only
possible configuration. One may simulate, for example, a decentralized system with a middleman
as dispatcher rather than the fleet’s manager.

23.5.1 Drivers

A driver is modeled as a DynAgent, whose behavior is controlled by a VrpAgentLogic that makes
the agent follow the dynamically changing Schedule.’ As a result, all changes made to the schedule
are visible to and obeyed by the driver. Whenever a new task is started, the driver logic (using a
DynActionCreator) translates it into the corresponding dynamic action. Specifically, a DriveTask

is executed as a VrplLeg, whereas a StayTask is simulated as a VrpActivity. Both VrpLeg and
VrpActivity are implemented so that any change to the referenced task is automatically visible
to them. At the same time, any progress made while carrying them out is instantly reported to the
task tracker.

23.5.2 Passengers

To simulate passenger trips microscopically, passengers are modeled as MobsimPassengerAgent in-
stances. As part of the simulation, they can board, ride and, finally, exit vehicles. In contrast to
the drivers, they may be modeled as the standard MATSim agents, each having a fixed daily plan
consisting of legs and activities.

Interactions between drivers, passengers and the dispatcher, such as submitting Passenger
Requests or picking up and dropping off passengers, are coordinated by a PassengerEngine®. Re-
quests may be immediate (as soon as possible) or made in advance (at the appointed time). In the
former case, a passenger starts waiting just after placing the order;in the latter case, the dispatched
vehicle my arrive at the pickup location before or after the designated time, which means that either
the driver or the customer, respectively, will wait for the other to come. To ensure proper coordi-
nation between these two agents, the pickup activity performed by the driver must implement the
PassengerPickupActivity interface.

5> Package org.matsim.contrib.dvrp.vrpagent.
6 Package org.matsim.contrib.dvrp.passenger.



Dynamic Transport Services 151

23.6 Optimizer

Since demand and supply are inherently stochastic, the general approach to dealing with dy-
namic transport services consists of updating vehicles’ schedules in response to observed changes
(i.e., events). This can be done by means of re-optimization procedures that consider all requests
(within a given time horizon) or fast heuristics focused on small updates of the existing solution,
rather than constructing a new one from scratch. Usually, re-optimization procedures give higher
quality solutions compared to ocal update heuristics; however, when it comes to real-world ap-
plications, where high (often real-time) responsiveness is crucial, broad re-optimization may be
prohibitively time-consuming.

In the most basic case, an optimizer implements the VrpOptimizer interface’, that is, implements
the following two methods:

* requestSubmitted(Request request)—called on submitting request; in response, the opti-
mizer either adapts vehicles’ schedules so that request can be served, or rejects it.

* nextTask(Schedule<? extends Task> schedule)—called whenever schedule’s current task has
been completed and the driver switches to the next planned task; this is the last moment to make
or revise the decision on what to do next.

This basic functionality can be freely extended. Besides request submission, one may, for exam-
ple, consider modifying or even canceling already submitted requests. Another option is monitor-
ing vehicles as they travel along designated routes and reacting when they are ahead of/behind their
schedules. Such functionality is available by implementing VrpOptimizerWithOnlineTracking’s
nextLinkEntered(DriveTask driveTask) method, which is called whenever a vehicle moves from
the current link to the next one on its path.

Last but not least, there are two ways of responding to the incoming events. They can be han-
dled either immediately (synchronously) or between time steps (asynchronously). In the former case,
schedules are re-calculated (updated or re-optimized) directly, in response to the calling of the
optimizer’s methods. This simplifies accepting/rejecting new requests, since the answer is imme-
diately passed back to the caller. In the latter case, all events observed within a simulation step are
recorded and then processed in batch mode just before the next simulation step begins.® By doing
that, one can not only speed up computations significantly, but also avoid situations when, due to
vehicles’ inertia (e.g., an idle driver can stop waiting and depart only at the beginning of the simu-
lation step), two or more mutually conflicting decisions could be made by the optimizer at distinct
moments during a single simulation step, causing the latter to overwrite the former (not always
intentional).

23.7 Configuring and Running a DVRP Simulation

Like in within-day replanning (see Chapter 30), dynamic transport services are typically run with
the DVRP contribution as a single-iteration simulation. Setting up and running such a simulation
requires carrying out the following steps:

1. Create a Scenario (MATSim’s domain data) and VrpData (VRP’s domain data),

2. create a VrpOptimizer; this includes instantiation of a least-cost path/tree calculator,
e.g., VrpPathCalculator, and

7 Package org.matsim.contrib.dvrp.optimizer.
8 This can be achieved by using an optimizer implementing the interface org.matsim. core.mobsim. framework

.listeners.MobsimBeforeSimStepListener.



52 The Multi-Agent Transport Simulation MATSIm

3. call DynAgentLauncherUtils’ initQSim(Scenario scenario) method to create and initialize a
QSim; this includes creating a series of objects, such as an EventsManager, DynActivityEngine,
or TeleportationEngine.

4. When simulating passenger services, add a PassengerEngine to the QSim; this includes in-
stantiation of a PassengerRequestCreator that converts calls/orders into PassengerRequests;
otherwise (i.e., non-passenger services), add an appropriate source of requests to the QSim,
either as a MobsimEngine or MobsimListener.

5. Then, add AgentSources to the QSim; for the DynAgent-based drivers, one may use a specialized
VrpAgentSource and provide a DynActionCreator.’

6. run the QSim simulation, and

7. finalize processing events by the EventsManager-.

The org.matsim.contrib.dvrp.run package contains VrpLauncherUtils and other utility classes
that simplify certain steps of the above scheme. To facilitate access to the data representing the
current state of the simulated dynamic transport service, MatsimVrpContext provides the Scenario
and VrpData objects and the current time (based on the timer of QSim).

The Vrpoptimizer’s performance may be assessed either by analyzing the resulting schedules, or
by processing events collected during the simulation.

23.8 OneTaxi Example

The org.matsim.contrib.dvrp.examples.onetaxi package contains a simple example of how to
simulate on-line taxi dispatching with the DVRP contribution. In this scenario, there are ten taxi
customers and one taxi driver, who serves all requests in the FIFO order. Each customer dials a taxi
at a given time to get from work to home. The example is made up of six classes:

* OneTaxiRequest—represents a taxi request.

* OneTaxiRequestCreator—converts taxi calls into requests prior to submitting them to the
optimizer.

*OneTaxiOptimizer—creates and updates the driver’s schedule.

* OneTaxiServeTask—represents StayTasks related to picking up and dropping oft customers.

¢ OneTaxiActionCreator—translates tasks into dynamic activities and legs.

* OneTaxilauncher—sets up and runs the scenario.

All data necessary to run the OneTaxi example is located in the /contrib/dvrp/src/main/
resources/one_taxi directory.

23.9 Research with DVRP

Currently, the DVRP contribution is used in several research projects. Two of them focus on on-line
dispatching of electric taxis in Berlin and Poznan (Maciejewski and Nagel, 2013b,c,a; Maciejewski,
2014). Another project deals with design of demand-responsive transport, where DVRP has been
applied to the case of twin towns, Yarrawonga and Mulwala, described in Chapter 95 (Ronald et al.,
2015, 2014). In a recently launched project, the DVRP contribution will be used for simulation of
DRT services in three cities: Stockholm, Tel Aviv and Leuven.

The current code development focuses on increasing performance and flexibility of the imple-
mented shortest paths search (see Section 23.3.2). An interesting future research topic, related
specifically to DRT planning, is multi-modal path search, where on-demand vehicles may be com-
bined with fixed-route buses within a single trip. Another potential research direction is adding
a benchmarking functionality and standardized interfaces so that the DVRP contribution could
serve as a testbed for the Rich VRP optimization algorithms.

9 Package org.matsim.contrib.dvrp.vrpagent,





