CHAPTER 49

Choice Models in MATSim

Gunnar Flotterod and Benjamin Kickhofer

» o«

This chapter attempts to reconcile MATSim’s mechanisms of plan “mutation”, “selection”
and “execution’, borrowed from evolutionary computation, with a discrete choice modeling
perspective.

Discrete choice theory originates in work by Luce and Suppes (1965) and McFadden (1975); Ben-
Akiva and Lerman (1985) and Train (2003) are the two standard textbooks in this area. The theory
is mainly used to describe individual choices among mutually exclusive alternatives. Discrete
choice models typically do not predict individual choices with complete accuracy. Luce and Suppes
(1965) distinguishes between two possible interpretations of this phenomenon: (1) People choose
randomly among their alternatives, rendering their behavior inherently unpredictable. (2) The
choice only appears to be random since the model does not perfectly capture the decision pro-
cess and its relevant decision variables. Both perspectives lead to the same result, the introduction
of probabilistic choice models.

Let U, be the universal set of all plans that may ever be considered by agent n and let C,, denote
that agent’s concrete plan choice set. The choice set independent probability that agent # selects
plan i for execution can then be written as

Poi|Up) = D Pulil C) - Pu(Cy | Un), (49.1)
C,clU,

explained as follows. Selecting a plan requires a plan choice set. The term P, (C, | U,) represents
the probability that this concrete choice set is C,,, which must be a subset of U4,. Technically, the
MATSim plan innovation modules draw from this distribution. The term P, (i | C,) represents
the probability that agent n selects plan i given that its concrete choice set is C,,. Technically, the
MATSim plan selection modules draw from this distribution. The product of these terms thus
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represents the joint probability that choice set C, is available and that plan i is chosen from that
set. The probability of selecting plan i independently of the concrete choice set then results from
summing up the probabilities of selecting it in the presence of all possible choice sets C,, C Uj,.

It is evident in Equation (49.1) that an agent’s behavior depends on both the choice model
P, (i | Cy,) and the way the choice set is generated through P,(C,, | Uy,). The following two sections
will look at each step in more detail.

49.1 Evaluating Choice Models in a Simulated Environment

This section’s discussion focuses on the choice distribution P,(i | C,) for given choice sets. In
MATSim, a plan is evaluated and selected based on the score as the sole property of the plan. This
is only a technical specification; the scoring and selection protocols are responsible for represent-
ing adequate perceptional and behavioral mechanisms. The notions of “choice” and “selection” are
subsequently used interchangeably (cf. Section 4.5.2).

The usual selection protocol of MATSim resembles a MNL choice model. Letting S,; be the score
of plan i of agent n, one has

. e:usni
Pn(l | Cﬂ) = W (49.2)

with u controlling the preference for higher scores. It is set to one in the remainder of this section.

49.1.1 Case 1: Score is or Converges Towards a Deterministic Value

If the score of a plan was a deterministic number representing an expected value, then
Equation (49.2) would constitute a plain MNL choice model with u taking the role of a scale param-
eter (see, e.g., Train, 2003, p.45). Such behavior can be approximated in MATSim by the following
configuration settings:

*A fixed choice set C, is eventually obtained by setting the configuration option
fractionOfIterationsToDisableInnovation below one, meaning that innovation (see
Section 49.2) will be switched off for the remaining fraction of iterations beyond the
configured value.

*Score convergence to its expectation value can be achieved by setting the configuration
option fractionOfIterationsToStartScoreMSA below one, meaning that scores will be averaged
according to MSA (Method of Successive Averages) for the remaining fraction of iterations.

49.1.2 Case 2: More General

Without the particular configuration mentioned in the previous section, things are somewhat
more complicated. Assume that the attribute vector x,; of the alternatives in Equation (49.2) is
defined through (a transformation of) the network conditions observed during the last iteration(s).
Assume further that the score is a linear function of these attributes:

Sui = BTxu (49.3)
= BT(EXu}+1,) (49.4)
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where f is a coefficient vector, superscript T denotes the transpose and 3,,; is a zero mean random
vector. In the general case of S,,; being a random variable and not just an expected value, one obtains
a mixture-of-logit model with the choice distribution

TE ni T ni
Py(i| Cy) = / oxp (P Exu) + £ 40 )P(nn)dnn (49.5)

> icc, €XP (ﬁ TE{xy} + B n,,

where p(n,,) is the probability density function of 5, = (1)), i.e., the joint probability density
function of the random disturbances of all alternatives of individual » (Train, 2003, Section 6).
This formulation comprises most, if not all, MATSim configurations currently used. It repre-
sents the ExpBetaPlanSelector and the equivalent ExpBetaPlanChanger. It also comprises the
BestPlanSelector, because that is equivalent to the ExpBetaPlanSelector with a very large (in-
finite) u. Arbitrary score averaging schemes are also included; this only leads to different instances
of p(n,).

Mainstream applications of mixture-of-logit models attempt to combine the tractability of
closed-form logit models with the flexibility of simulating arbitrary p(n,,) distributions. The dis-
tribution of 7,, is often as simple as a multivariate normal because this already allows for the
introduction of rich correlation structures into the underlying random utilities. In MATSim, how-
ever, the simulated error term 5,, is extremely complicated. Revisiting Equation (49.4), it defines the
variability of the scores resulting from the fact that the simulated network conditions are stochastic.
The distribution from which these network conditions are drawn is defined implicitly through the
mobility simulation. It is not available in closed form; one can only draw from it.

Additional complexity results from the simulated network conditions being, in turn, the con-
sequence of simulated travel behavior that is again defined through Equation (49.5). Just as a
representation of the mutual demand/supply dependency is essential in transport planning, the
circular definition of the 5, terms adds realism to MAT Sim:

1. Assume one could somehow make the simulated network conditions more realistic. The
result would be a more realistic distribution p(#,,) of the simulated error terms.

2. All else equal, increasing the realism of p(n,,) in Equation (49.5) would also increase the
realism of the resulting choice distribution.

3. This, in turn, would lead to the selection of more realistic travel plans, meaning that their
execution would result in even more realistic network conditions.

However, this positive feedback only applies to the extent to which the error terms in the behav-
ioral model are indeed mobility simulation outputs. Simulated travel time (variability) is such a
case. Unobserved preferences of the decision maker, however, are not an output of the mobility
simulation and hence need to be differently captured.

It is by no means obvious how the randomness of the simulated network conditions should
enter 3),,. The notion of “learning” again enters the picture, cf. Chapter 48. However, if the sim-
ulation iterations really represented simulated days then a real human learning model would
be needed to combine a sequence of past network conditions into an instantaneous 7, real-
ization. Without a sound instance of such a learning model, a learning-based interpretation of
Equation (49.5) cannot be given.

Another perspective on this problem is possible, continuing the arguments of Chapter 48. It
is stated there that the purpose of MATSim’s iterative mechanism is merely to attain a realis-
tic stationary distribution. If so, then the sole purpose of the simulated 5,;s is to yield a realistic
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stationary choice distribution. To illustrate this perspective, consider the following moving-average
score updating rule:

(49.6)

Sﬁi otherwise

G [aSﬁi +(1- a)Sﬁi if n chose plan i
ni R
where S¥ is the filtered score of iteration k and S* is the concrete score observed in that iteration.
The learning rate a controls how strongly the filtered score is smoothed out, thus controlling the
variability of ,,. MATSim enables this mechanism through the learningRate parameter.
Assuming - for simplicity - that the unfiltered stationary score S* fluctuates in stationary con-
ditions independently from iteration to iteration around its expected value, one can derive the
following (as demonstrated in this chapter’s appendix):

E{S%} = E{S) (49.7)
- a
VAR{SY®} = mVAR{sﬁ . (49.8)

This means that the filtered score is unbiased with respect to the underlying score process and
that its variance is in the interval from zero to the variance of the unfiltered score, depending on the
chosen a. There is no need to justify this through a learning process. One has merely constructed a
parametrization of the distribution p(#,,). In the resulting mixture model Equation (49.5), a should
be estimated from real data, just like any other model parameter. Even though this apparently
has not yet been attempted, techniques necessary for such an endeavor are, in principle, available
(Gourieroux et al., 1993).

49.1.3 Expected Maximum Utility

The expected maximum utility of Equation (49.5) is relevant to the microeconomic interpretation
of MATSim outputs. A recipe for its computation is described next. Let

U = Vi+nite (49.9)

using the shortcuts V; = BTE(Xui}, ni =B 0, letting &; be the Gumbel error assumed by the
multinomial logit model and dropping the n index for brevity. Following this notation, Equa-
tion (49.4) is rewritten as

Si = Vi+n. (49.10)

One needs to distinguish between the score of a plan when it is selected and its updated score
after it has been executed. To start, it is assumed that the agent receives an expected maximum
utility depending on the scores at the time of plan selection, not after plan execution. The expected
maximum utility of Equation (49.5) could then be expressed as follows:

Eimain] = E{maxVi+8i+7]i} (49.11)
ieCy ieCy
= E,,’E&- [m%XVi—i-S,'—I—}’]ilﬂ}] (49.12)
ieC,
= Ey{ln) eVt (49.13)

ieCy,
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where the law of total expectation is used and E; and E, represent expectations with respect
to & and 7, respectively. The remaining argument of the expectation is the expected maximum
utility of a multinomial logit choice model given the systematic utilities V; + #;. This expression
can be numerically approximated by averaging over many realizations of #; (i.e. over simulation
iterations):

R
E,1In Z Vit ~ % Zln Z eVithi (49.14)
r=1

ieCy ieCy

where 7] is the realization of #; in iteration r. This expression holds regardless of the functional
form of the mobsim-generated mixture distribution.

Now, one needs to account for the fact that agents can only evaluate past information when
making a choice leads to a future score payoff. Recalling that score variability is represented by the
n; variables in Equation (49.5),

no= Ni+7i (49.15)

is written with #; contributing to the score actually received Equation (49.10), #; being the agent’s
prediction of that and y; being a random variable capturing the difference between the two.

To express the expected maximum experienced utility, one hence needs to add (an estimator of)
the expectation of y; to Equation (49.14). Using Equation (49.15) and Equation (49.10), one obtains

y = ni—1i (49.16)
= (mi+V)—@i+Vi) (49.17)
Si—Si (49.18)

where S; can be interpreted as the agent’s prediction of the selected alternative i’s score. The expec-
tation of this quantity can again be approximated by averaging, resulting in the following estimator
of the expected maximum experienced utility, with i(r) indicating the alternative that was selected
in iteration r:

R R
i d 1 Qr 1 A~
E[max yexperience ] DI DIEED (81 =51 (49.19)
r=1 r=1

ieCy 4
ieCy

The second sum of this expression estimates a “cost of uncertainty”; the less predictable the net-
work conditions (and thus the selected plan’s future score), the worse off an agent is on average. The
usefulness of this expression depends on the simulation’s ability to create realistic network condi-
tion variability, for instance along the lines of the last paragraphs of Section 49.1.2. Section 51.2.5.5
discusses this a bit further.

49.2 Evolution of Choice Sets in a Simulated Environment
49.2.1 Overview

The choice set of agents can in principle be computed a priori and then held fixed duringa MATSim
simulation run. However, the pre-computation would have to be done for every relevant system
state (e.g., before and after a policy change). Alternatively, MATSim can be used to generate agents’
choice sets within the iterative loop (Section 1.2).
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As Equation (49.1) shows, the generation of the choice sets affects the simulated choices. The
simplest illustration of this mechanism isthat alternatives that never appear in the choice set cannot
be chosen. Similarly, including certain alternatives with a low (high) probability in the choice set
decreases (increases) their probability of being chosen, given that the choice model is not changed.
When a policy study’s synthetic choice sets are very different from the alternatives considered in
the real world, it is unlikely that the simulation will display correct aggregated quantities or useful
sensitivities for policy measures.

These types of biases are well-known in the discrete choice community, even though the focus
is there, arguably, more on estimation than simulation. The problem is particularly acute in route
choice modeling because the combinatorial size of the universal route choice set prohibits its enu-
meration. Drawing further from the discrete choice literature (specifically Frejinger and Bierlaire,
2010), different interpretations can be given to “plan mutation” and “plan innovation” in MATSim.

An interpretation of mutation and innovation as perceptional models of travel plan choice set
formation is hindered by the need to validate them against real and unobservable choice sets.
Alternatively, one may assume that travelers consider the universal choice set and that the choice
of unfeasible alternatives is impeded by correspondingly low utility values. In this setting, muta-
tion and innovation constitute sampling techniques serving the computational purpose of reducing
the universal choice set to a small, representative subset. However, one still faces the problem from
above that the concrete sampling protocol has a concrete effect on the simulated behavior. The cure
when estimating choice models is to correct for the sampling based on known sampling probabil-
ities (e.g. Ben-Akiva and Lerman, 1985, Chapter 9), even though these probabilities can be rather
difficult to obtain (Fl6tterdd and Bierlaire, 2013; Frejinger et al., 2009a). The problem appears to
be less explored when it comes to simulation.

MATSim’s currently implemented mutation and innovation procedures constitute concrete, yet
heuristic, approaches to the choice set generation problem, aiming at valid predictions at the sys-
tem level. Possible biases induced by these procedures can, however, be difficult to quantify. For
example, the current MATSim implementation might, under certain conditions, yield incomplete
choice sets and correlated alternatives (also see Chapter 51). To mitigate the effect of strong correla-
tions between alternatives within the choice set, so-called diversity increasing re-planning modules
have been tested (see, e.g., Nagel et al., 2014). In the same context, Grether (2014, Chapter 6) and
Neumann et al. (2013) have tested path size logit approaches (see, e.g., Daganzo and Sheffi, 1977;
Frejinger and Bierlaire, 2007) to maintain diversity in the choice set by penalizing similar alterna-
tives. Still, these approaches are-as of now-ad-hoc solutions, with little theoretical foundation in
the simulation context.

It thus seems worthwhile to revisit the plan choice set generation problem from a statistical per-
spective. The goal of the following presentation is more to establish a corresponding mindset than
deliver a complete solution.

49.2.2 Towards Unbiased Choice Set Generation

To make the simulated long-term (stationary) plan choice independent of the plan choice set
generation, one may require the following stationary choice distribution:

P,(i|Upy) = =/, (49.20)

meaning that plans are selected from the universal choice set ;.

Denoting by P(C, — C),) the probability that plan mutation/innovation turns the choice set C,
into C},, it is possible to enforce the long-term choice distribution Equation (49.20) through an
application of the MH (Metropolis-Hastings) algorithm (Hastings, 1970, see also Flotterdd and
Bierlaire (2013) for a related approach to a similar problem).
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The MH algorithm specifies the transition distribution of a Markov chain so that a desired sta-
tionary distribution of that chain is reached. Given that Chapter 48 has established a formulation
of MATSim as such a chain, the MH machinery can hence be inserted into the MATSim itera-
tions. A simplification made in the following is that the choice distribution of agent n is considered
independent of all other agents.

To make this concrete, let the state space of the algorithm be the tuple (C,, i € C,) consisting
of choice set and resulting choice. During each (MATSim) iteration, one first draws a new choice
set C,,, then draws a new choice i’ € C,, according to the usual model (49.2) and finally accepts the
new state (C,,, i") with probability

(49.21)

AL(Cn, i), (C,, )] IPn(i’ |Uy) P(C, = Cp)Py(i| Cp) 1]

Pu(i|Uy) P(Cyp— CLP( | C))’

and rejects it otherwise (meaning that the original choice set C, and choice i € C,, are maintained)."
Intuitively, the first fraction introduces a preference for states comprising a more probable choice
and the second fraction corrects for the way transitions between states are proposed.

Assume that the plan innovation yields exactly one new plan i, through a against
the last iteration. Let the corresponding plan innovation distribution be approximated by
eHinnoSni / Zjeun eHinnoSnj wiith a very large finno. Assume further that i, replaces exactly one uni-
formly selected plan iy, which implies that the choice set size J is constant and exclude for
simplicity the case that the best response innovation reconstructs the removed plan exactly. This
leads to

P(C, — C.) 1 _ et (49.22)
n = T innoSnj :
" J Zjelxln et g
, 1 eﬂinnosniom
P(C,— C,) = (49.23)

] Zjéun e:u innosnj ’

Inserting this as well as Equation (49.2) and Equation (49.20) into Equation (49.21), one obtains

M Sni
S e/‘innosniout —Z ¢ m#S -
. . . e,u ni’ jEC e n
¢l(Cr D, (C )] = miny = i 1 (49.24)
e nt

e:uinnosniin
> jec, €
J€Cn

Z' o eHSnj
= min{ etimoWriou=Snin) . = (49.25)
ZjeCn ettn
,uinno:_>oo 1 if S”iout 2 Sm'in (4926)
0 otherwise.

—_

The acceptance probability ¢ (X — X”) in MH sampling is calculated as

. (W(X/) ‘Ppropose(X/ - X) )
min 5 s
w(X) - ppropose (X — X')

where ppropose (- — ) is the probability that a certain transition is proposed, and w(X), w(X') are the relative weights
of the respective states. It is important to note that w does not have to be normalized; it is sufficient if w(X)/w(X') =
p(X)/p(X"). P(C— C)P(i'|C) is the probability that the choice set transitions from C to C’ and that ' is selected
from the resulting choice set.
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Some care is needed when evaluating this expression because it assumes Sp;;, and Sy, to be inde-
pendent random variables, whereas S,;;, is (due to the best response) always maximal among all
alternatives given the most recent iteration. One should thus evaluate this expression by computing
either score from the network conditions of a different, randomly selected stationary iteration.
This would allow the selection of plans according to (49.20) from an unconstrained choice set,
even though one enumerates only a small subset of the full choice set, which is updated through a
computationally efficient best-response mechanism.
In summary, one does the following for each agent in each iteration:
1. Randomly select a given plan for removal and compute a new best-response plan against the
last iteration.
2. Is the new plan better than the one selected for removal, based on network conditions from
two randomly selected stationary iterations?
*Yes: Keep the previously selected plan and the previous choice set.
*No: Remove the randomly selected plan from the choice set, add the newly generated plan
and select a new plan from the new choice set.
This (at first glance perhaps counter-intuitive) logic can be explained as follows: Best-response
creates new plans that are by chance better than any other plan in a given iteration. Best-response
is thus corrected for by accepting the new plan only if it is by chance worse than a randomly selected
alternative plan, with both plans being evaluated in randomly selected stationary iterations.
Note that the accuracy of this approach depends on the ability of the best-response plan innova-
tion to create sufficiently variable plans, in the sense that the plan choice set innovation process is
irreducible (Ross, 2006, see also Section 48.3 for an intuitive definition of irreducibility).

49.3 Summary

This chapter attempted to phrase MATSim’s mechanisms of plan scoring, innovation, mutation and
selection in the more mainstream terminology of discrete choice modeling. The implications of
evaluating stochastic scores when selecting a plan were explained. The chapter also addressed how
simulated choices depend on the way the underlying plan choice sets are generated, and different
ways to address this problem were described.

The chapter clearly brought up more issues than it resolved. The take-away message, if any, is
probably that even though MATSim agent behavior is roughly based on discrete choice modeling,
one needs to be careful when assuming full consistency with a particular discrete choice model.

Appendix: Derivation of Filtered Score Statistics

Writing out the expectation:

E{Si) = Pu@E(aSy+ 1 -8} + 1 —P.()ESY)  (49.27)
SESEF —E(85) = aP,()(E(SK) —E(SE)). (49.28)

From limy_, o E{Sﬁfl} — E{gﬁi} = 0 then follows

: k <k _
lim (Bsk)—EGL)) = o (49.29)
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Proceeding in a similar way for the second moment:
E((S5?) = Pa(E{(@Sk+ (1 — a)Sh)*)
+(1 = P, ()E((S})) (49.30)
Pa(i)a[aE((S5)?)

= klim E{(SKT)%) — E((S5)%)
+2(1—a)E{SE 12 — 2 — a)E{(S’;i)Z}] (49.31)

From limy_, oo E{(:?ﬁfl)z} — E{(S’r‘li)z} = 0 then follows

_ a 2—20
limesooBUS)) = S E((S3)*) = S —EiSu” (49.32)

The limiting variance then results from inserting of Equation (49.29) and Equation (49.32) into

limy_s o6 VAR(S ) limgos oo [E{(S’;,.)z} - E{S’;i}z] (49.33)

= % VAR{((SK)?). (49.34)
2—a








