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Abstract

Participation inequality — the phenomenon that a very small percentage of par-
ticipants contribute a very significant proportion of information to the total
output — is persistent across Volunteered Geographic Information (VGI) and
citizen science projects. It has been identified in both online and offline pro-
jects that rely on volunteers’ effort over the past 20 years and, therefore, can be
expected to appear in new projects. This chapter looks at participation inequal-
ity (also known as the 1% rule or the 90-9-1 rule), its origins and some of its
characteristics. The chapter also explains how participation inequality emerges
in a project at both temporal and spatial scales, and also evaluates its implica-
tion on the use of VGI and citizen science data. The chapter suggests a generic
rule for analysts of VGI and citizen science datasets, in the form: ‘When using
and analysing crowdsourced information, consider the implications of participa-
tion inequality on the data and take them into account in the analysis.
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Introduction

One of the most persistent aspects that can be noted in systems which facili-
tate user-generated content (among them volunteered geographic information
and citizen science data) is the inequality in the level of participation that they
exhibit. According to Jakob Nielsen (2006), participation inequality was first
recognised by Hill and his team (1992) while studying the development of digi-
tal documents and analysing the contributions by different people to the final
product. It manifests itself in online forums such as mailing lists, discussion
forums, games and ecological observations (e.g. Hill et al. 1992; Mooney & Cor-
coran 2012; Lund et al. 2011; van Mierlo 2014; Silvertown et al. 2015). In each
of these cases, the overwhelming majority of people who use the information or
are registered to the service do not contribute any information to it. The propor-
tion of registered people who do not contribute can reach 90% or even more of
the total number of users. Of the remaining participants, the vast majority con-
tribute infrequently or fairly little - these account for 9% or more of the users.
Finally, the last 1% contribute most of the information. This has led to framing
the phenomenon as the 90-9-1 rule (Nielsen 2006). However, participation can
be very skewed. As Nielsen demonstrates, in Wikipedia, 0.003% of users con-
tribute two-thirds of the content, with a further 0.2% contributing infrequently,
making the relationship 99.8-0.2-0.003% (with the increased use of Wikipe-
dia since 2006, the situation has worsened). There is some evidence to suggest
that the proportion can be different - for example, Budhathoki (2010) suggests
that in OpenStreetMap the proportions are 70-29.9-0.01%. Recent analysis by
Harry Wood (2014) provides an indication of this relationships (Figure 1), with
the contribution of the first ranked 1,000 participants dwarfing the effort of all
other contributors, and only about 300,000 participants contributing more than
10 points of data - although at the time there were 2 million registered users.

Participation inequality has been observed in VGI and citizen science pro-
jects such as OpenStreetMap (Budhathoki 2010; Mooney & Corcoran 2012;
Neis & Zipf 2012), Galaxy Zoo (Ponciano & Brasileiro 2014) and bird watching
(Cooper & Smith 2010). It is especially noteworthy that participation inequal-
ity is not only appearing in online projects, but also can be observed in projects
that mainly happen offline, such as participation in environmental volunteer-
ing or when analysing the levels of contribution of different volunteers in bio-
logical observations across London.

In this chapter, we look at the implications of participation inequality and
argue that it is among the most significant aspects of VGI and citizen science.
We start by noticing what we already know about participation inequality and
its manifestations. This is followed by suggesting possible explanations for
how it occurs and evolves over time. The fourth section discusses the potential
implications on project development and the use of information that emerges
from it. We conclude with open research questions and future directions for
investigation that are of specific interest to researchers of VGL.
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Throughout the chapter, OpenStreetMap is being used to demonstrate the
nature and implications of participation inequality. While OpenStreetMap have
specific characteristics in terms of participants’ profiles and social dynamics
(Budhathoki 2010; Haklay 2010), it can be used to illustrate the general aspects
of the phenomena. Other projects are being used to augment the picture.

Participation inequality - what do we know?

Unlike command and control processes that are common in industrial informa-
tion creation, VGI and citizen science are produced through a distributed, less
coordinated system. Within industrial processes, there is scope for planning of
coverage and allocation of resources. For example, when planning the surveying
of a city in an industrial process, it is possible to divide the efforts of the survey-
ors to ensure uniform level of coverage and time allocation to different parts in
proportion to the amount of work that is required. Of course, the abilities of the
different surveyors will have an impact on the final results but, in general, these
can be minimised through quality assurance so the final product is uniform.

Within a system that relies on ‘crowdsourcing’ - the use of a large group
of people with whom there are no direct employment relationships - there is
far less ability to dictate to the participants where, when and how they should
contribute information. For example, in a system that provides traffic informa-
tion on the basis of users’ satellite navigation devices, there is a co-dependence
between the number of users in a given location and the ability to provide
information about this place. Moreover, because the devices are used within the
context of daily activities, such as the school run or a trip to the local supermar-
ket, there will be more information about places in which many people travel
daily (e.g. city centre) and especially during rush hour. While both industrial
and crowdsourced systems are socio-technical systems, in the latter the ‘socio’
requires special attention, particularly to the way it influences the resulting
information that emerges from the system.

In the case of participation inequality, since it has been so persistent over
the years, it is highly likely to appear in any crowdsourcing project. It has been
observed from the pre-Web internet messaging system Usenet (Whittaker et
al. 1998) to current large-scale online citizen science (Ponciano & Brasileiro
2014). It is, therefore, part and parcel of VGI and citizen science.

Just as interesting is that the phenomenon repeats itself at various scales
(something akin to Power Laws), so analysing the level of participation in
OpenStreetMap for the area of London, Europe or across the world will show
participation inequality (Haklay 2010; Mooney & Corcoran 2012; Neis & Zipf
2012). Participation inequality also occurs at different temporal scales of weeks,
months or years (Neis & Zipf 2012). As can be expected with statistical analysis
of this sort, the larger the area or the longer the time frame, the clearer the pat-
tern and the position of various participants.
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Another important aspect known about participation inequality is that low-
ering the barrier for participation does help, but to a limited extent. Even in vol-
unteer computing projects, in which participants download software to their
computers that utilises unused processing resources for scientific research, par-
ticipation inequality persists. IBM World Community Grid serves as an exam-
ple. This project is an aggregator of volunteer computing projects, and yet few
members contributed most of the processing. Of the 350,000 participants, the
top contributor has contributed 325 times more than the 250th contributor,
and 875 times more than the 1,000th contributor.

The use of a leader board and providing credits to emphasise the position of
participants has been shown to encourage competition among contributors,
but with a potential to alienate some participants and reduce their motivation
(Massung et al. 2013). The assumption that it is always valuable to encourage
competition among participants to yield more information should be ques-
tioned, and there are alternative, such as the mechanism that encourage col-
laboration that Silvertwon et al. (2015) offer.

Participation inequality also manifests itself through geographic and tem-
poral patterns. Thus, places that are within the coverage area of highly active
participants will have more contributions than areas that do not have many
participants. More generally, the geographic distribution of information shows
that some places are more popular and receive much more attention than oth-
ers. Similarly, the temporal pattern of highly active contributors has a dispro-
portionate impact on the temporal patterns of data collection activities as a
whole. Thus, the sleeping and working patterns that can be observed within the
contributed information will be influenced by the practices of high contribu-
tors (Yasseri et al. 2013).

Finally, while high contributors receive a lot of attention, in comparison to
the very large group of people who contribute very little both individually and
to the overall size of the dataset, we should not forget that they are, statistically,
outliers. They are not representative of the overall population, nor should we
expect them to be so. There is a need to have the majority of people as consum-
ers of information, as otherwise the producers would lose the raison détre to
create and share information.

How participation inequality evolves over time and space

One of the puzzling questions regarding participation inequality is how it
evolves. After all, at first look the participants are acting as volunteers and
therefore there is no limitation on the number of people who can join a spe-
cific activity in citizen science or VGI or how much each of them contributes.
Second, arguably, the actions of one participant do not stop another, for exam-
ple when viewing the same bird or taking a geotagged picture of Big Ben (see
Jayaraman 2012). Furthermore, the participants are only loosely coordinated
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and therefore not necessarily aware of the actions of other participants, and
there is no reason for one to compete with another or even be aware of their
contribution. However, some of these observations are inaccurate, and a fur-
ther analysis of the process that created participation inequality can explain the
source of the observed patterns.

Firstly, we can start by noticing that, in many VGI and citizen science pro-
jects, some resource is finite. For example, in OpenStreetMap or Wikimapia,
once a participant has tagged a location and mapped it, this specific place is
no longer available to other users to carry out the mapping. This is also true in
volunteer thinking projects in which participants help scientists in classifying
information online. In such projects, the system allocates the images to partici-
pants and, after the image has been viewed by a given number of participants,
it is not shown anymore. Therefore, if one participant becomes highly active,
they reduce the amount of work that is left to other participants to carry out.

Secondly, the temporal aspects of the project also play their part in generating
participation inequality. For example, participants who joined OpenStreetMap
early on were facing an empty map, in which it was relatively easy to identify
and digitise objects such as motorways. Over time, the ability to digitise objects
rapidly diminished as the map became complete. For a volunteer who joins the
mapping process today, in many places the effort that is left requires adding
more intricate details of building or address information. This is also true in
citizen science, for example in the British Trust of Ornithology (BTO) breeding
bird survey which started over twenty years ago. A volunteer that joined the
project in the early stages will have collected many more records over the years
than a person that will join the project today, who will not be able to ‘catch up’
to such levels of recording.

Thirdly, another side to the temporal aspect is demonstrating the link
between participation inequality and other social inequalities. The contribu-
tions of participants can be translated into time — for example, one of top con-
tributor to OpenStreetMap in June 2015 (Wladystaw Komorek) edited over
4.94 million objects in 966 active mapping days over 3 years, contributing on
average about 5,100 points in an active day. With an assumption that it is pos-
sible to record 2 objects per second, this represents an average investment of
about hour in digitising only (without any breaks). This is, of course, a low
estimation, since such a participant spends time on mailing lists, meetings and
going out mapping. When considering that, across advanced economies, peo-
ple have about 36.5 hours of leisure a week (OECD 2009), it is clear that, for this
participant, OpenStreetMap is the most important leisure activity during that
period. However, since leisure time is more available to men, and is reduced in
people with major caring responsibilities, it is more likely that men with a well-
paid job will be able to become major contributors of VGI and in many citizen
science activities. Indeed, many projects have people with such profiles as their
top contributors (e.g. Cooper & Smith 2010). However, one should be careful
of sweeping generalisations about the profile of top contributors, as they are
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specific to projects and research area — for example in the EyeWire project, in
which participants help brain research by analysing the structure of neurons,
65% of top contributors are women (Kim et al. 2014), while bird watching is
dominated by men (Cooper & Smith 2010).

Fourthly, access to financial resources can have an impact on the ability of
people to become high contributors. For example, an Australian study of bird-
watchers concluded that some of them travel 300 to 1,900 km from home to
record an observation (Tulloch & Szabo 2012). Such extensive travel, apart
from dedication, also requires financial resources. Other VGI and citizen sci-
ence activities also involve purchasing specialised equipment and dedicating
time to learn how to use it.

Finally, there is a need to consider internal and external motivations of high
contributors. The various studies that were mentioned above, and others, dem-
onstrate clearly that the top contributors represent a different demographic
group - for example, in EyeWire they are older than the average participant
(Kim et al. 2014). Studies show that their internal and external motivations play
an important part in maintaining their engagement with a project. For some
participants, competition is a significant motivation (Massung et al. 2013) while
for others the joint contribution to science is a major one (Nov et al. 2011).

The implications of participation inequality

Based on the analysis above, we can formulate a general rule for crowdsourced
geographic information: ‘When using and analysing crowdsourced information,
consider the implications of participation inequality on the data and take them
into account in the analysis.

As we have seen, crowdsourced information, either VGI or citizen science,
is created through a socio-technical process, which, by necessity, will have
impacts on the final outputs. Yet, all too often it is easy to forget the social
side — especially when using the information without paying due attention to
the metadata of who collected it and when. Even though analysts who use the
information are aware that the data source is expected to be heterogeneous
because of the nature of the crowdsourced process, it is easy to forget participa-
tion inequality and treat each observation as similar to other observations and
assume they were all produced in a similar way.

Yet, data is not only heterogeneous in terms of consistency and coverage;
it is also highly heterogeneous in terms of contribution, which can have far-
reaching implications on quality, coverage and content. As we have explored,
the outcome is dependent on the expertise of heavy contributors, their spatial
and temporal engagement, and even on their social interactions and conduct.

For example, some of the top contributors of OpenStreetMap naturally con-
centrate their effort in the city where they live. Knowing where these individ-
uals are active can help in quality assurance processes by comparing novice
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practices to their actions, potentially changing the number of people that are
required to map an area well (Haklay et al. 2010). In some projects, such as
iSpot (Silvertown et al. 2015), in which participants help in the identification of
arange of species, there are mechanisms to reward high contributors with trust
marks and to give their opinions more weight during the identification process.

Another aspect of the impact of high contributors is the social evolution of
the project. In some projects, high contributors might exhibit abrasive behav-
iour towards other participants or protect ‘their patch’ (the area in which they
operate) by aggressively editing any new information to fit their standards.
Such conduct is not welcoming to new participants, and can impact on the
growth of the project and even its resilience in cases where the high contributor
leaves the project.

The specific background and interests of high contributors will, by necessity,
impact on the type of data that is recorded. This is especially important in VGI
projects where the details of what to record are left to the participants. For
example, lack of interest in a class of facilities (e.g. wheelchair accessible toilets)
will mean that such information will be lacking from the resulting dataset and
might shape the activities of other participants (Stephens 2013).

Interestingly, while some research analysed the biases that are created by high
contributors (Haklay 2010; Bégin et al. 2013; Mooney 2013), there is relative
lack of attention within the VGI literature to the wider impact that they have
on the information and on other participants.

Conclusion

In this chapter, we looked at participation inequality and its implications on
VGI and citizen science datasets. We have seen that participation inequality —
the phenomenon in which a very small percentage of participants contributes a
very significant proportion of information to the total outcome - is persistent.
It occurs across spatial and temporal scales and is driven by multiple factors.

Participation inequality impacts on the social and technical outcomes of a
project and, because of that, it is critical to remember the impact and implica-
tions of participation inequality during the analysis and use of the information.
There will be some analysis to which it will have less impact and some where
it will have major impact. In either case, it needs to be taken into account. This
can be done by including an analysis of participation patterns early on in the
analysis of a dataset, and examining the biases that are caused by it.

While we can expect it, we do need to understand more about the process
that created it and its impact on the resulting datasets. There is plenty of scope
for spatio-temporal analysis to identify the actions of high contributors from
their early actions, and evaluate to what degree they impact on other contribu-
tors. There is also value in more detailed analysis of how people at different lev-
els of contribution add to the project and whether there are ways to encourage
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people to move between contribution groups. Finally, the ethical and practical
implications of high contributors should be assessed, especially in commercial
VGI projects.
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