
CHAPTER 48

MATSim as a Monte-Carlo Engine

Gunnar Flötteröd

48.1 Introduction

“Agents” that “learn” in a “synthetic reality” is a common term in Arti�cial Intelligence (Russel and
Norvig, 2010) and/or Multi-Agent simulation (Ferber, 1999), but it does not belong to the standard
terminology of transport modeling. This chapter explains the functioning of MATSim in terms of
modeling and simulation concepts that are more established in the transportation �eld.

It is important to distinguish between a model and a simulation. A model describes certain
aspects of a system; a simulation evaluates a model. For instance, a simple route choice model
may state that route A is selected with 25 % probability and route B with 75 % probability. A sim-
ulation of this model then draws one or more realizations (route choices) from this distribution.
One always needs a model before one can simulate. Possible feedback from simulation to model-
ing comprises (i) new insights into emergent model properties and (ii) computational constraints
that prohibit overly complex model speci�cations. In MATSim, both kinds of feedback are strong
drivers of the modeling.

Consider Figure 48.1, displaying MATSim as a model system comprising a (travel) demand
model and a (network) supply model. The travel demand model predicts travelers’ behavior, given
their information about the network conditions. The network supply model predicts these network
conditions using a certain travel behavior chosen by all travelers in the system. This is comple-
mented by the modeling assumption that demand and supply are mutually consistent in the sense
that the network conditions resulting from a certain travel behavior are statistically equal to the
network conditions that caused this behavior.

Simulation addresses the question of how to identify this state of mutual demand/supply con-
sistency, i.e., it solves the model. The model system shown in Figure 48.1 is complicated—it
is nonlinear, stochastic and extremely high-dimensional. The only known operational tech-
nique to solve it exploits an additional modeling assumption that justi�es the real occurrence of
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Figure 48.1: Demand/supply perspective on MATSim.

Algorithm 48.1 Iterative scheme to reach demand/supply consistency
1. Create a synthetic agent population.
2. Create a synthetic environment.
3. Iterate:

(a) All agents choose some planned travel behavior.
(b) All agents execute their travel plans.
(c) All agents see the resulting network conditions.

demand/supply consistency: travelers adjust their behavior for their own bene�t and only stop
doing that when further improvement is insubstantial. Demand/supply consistency characterizes
the outcome of this process jointly for all travelers.

Now, consider Algorithm 48.1, which displays the high-level simulation logic of MATSim. This
is indeed a logic that iteratively adjusts travel demand. If this logic adjusts the simulated behavior
of the simulated travelers until further simulated improvements are insubstantial, then this logic
should approach a state of demand/supply consistency. That is, Algorithm 48.1 may be a valid
solution method for the model system shown in Figure 48.1. However, that model system does
not specify how demand and supply become consistent; it merely speci�es that this eventually
happens. The only modeling assumption made is that some process of this type exists. The purpose
of Algorithm 48.1 is not to mimic this (unspeci�ed) process; it only identi�es the �nal outcome of
that process.

The fact that Algorithm 48.1 mimics real, urban, day-to-day dynamics invites misleading inter-
pretations of the underlying model system. In particular, it is a misconception that there is more
than a super�cial resemblance between the “learning agents” in MATSim and the (hardly under-
stood) learning processes of real humans. If the notion of “learning” has to be used at all when
interpreting Algorithm 48.1, it should be understood as “moving a MATSim model closer to its
solution point”. Also see Section 97.3.5.

The remainder of this chapter phrases these statements more technically and explains their
implications for the interpretation of MATSim outputs. This presentation is in parts a more
technical reformulation of Chapter 47.
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48.2 Relaxation as a Stochastic Process

48.2.1 Probabilistic Model Components

Algorithm 48.1 can be written more formally. Denoting the iteration index by k, the following
happens in every iteration:

1. All agents choose some planned travel behavior, resulting in the travel demand Dk of the
entire agent population.

2. All agents execute their travel plans, resulting in the (time-of-day dependent) network
conditions Ck.

3. All agents see the resulting network conditions Ck. As a result, the information Zk is now
available to all agents.

The variables D and Z apply to the population as a whole, comprising all agents. Similarly, the
variable C represents network conditions for an entire day and for the entire physical system. Given
MATSim’s high level of detail, one can think of D, C and Z as placeholders for arbitrarily large and
complex data structures. Under MATSim’s standard conditions, D corresponds to the set of selected
plans, C to the collection of all events and Z to the full plans �le including the scores.

Step 1 evaluates the (stochastic) travel behavior model of each agent. Technically, this com-
prises (i) an optional update of the plan choice set and (ii) the choice of one plan to be executed.
Symbolically, this is written as

Dk
∼ P(D | Zk−1), (48.1)

meaning that the travel demand of iteration k follows a probability distribution that is conditional
on the information Zk−1 available to the agents at the end of iteration k− 1.

Step 2 runs the (stochastic) mobility simulation that moves all agents jointly through the network.
In symbols, this becomes

Ck
∼ P(C | Dk), (48.2)

meaning that the network conditions of iteration k follow a probability distribution that is
conditional on the demand Dk.

Step 3 updates the (possibly stochastic) information available to all agents using the new network
conditions Ck. This is written as

Zk
∼ P(Z | Ck,Zk−1). (48.3)

That is, the new information Zk is not only a transformation of the current network conditions Ck

but may also be based on the previously available information Zk−1.
The conditional distributions Equation (48.1)–(48.3) are detailed elsewhere in this book:

Chapter 49 describes the plan selection mechanisms leading to P(D | Ck−1), Chapter 50 explains
the physical processes underlying P(C | Dk), and Chapter 3 speci�es at least some of the informa-
tion update logic behind P(Z | Ck,Zk−1). A greater level of detail is, however, not necessary in this
chapter.

48.2.2 Markov Chain Perspective

Algorithm 48.1 constitutes a discrete time stochastic process. “Discrete-time” because it evolves
in stages (from iteration to iteration), stochastic because it evaluates stochastic models. Further,
one iteration of this process requires only information about the previous iteration’s outcome. This
allows the expression of Algorithm 48.1 in terms of a “Markov chain” (Ross, 2006).

In symbols, let Xk be the Markov chain’s stochastic state during stage k, and let P(Xk
= x) be the

probability that the chain is in the concrete state x. Further, let Tx
y be the probability that the chain
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enters state x in its next stage given that it is currently in state y. The transition from one stage to
the next can then be expressed as follows:

P(Xk+1
= x)=

∑
y

P(Xk
= y) ·Tx

y . (48.4)

Each argument of the sum expresses the probability of the chain being in one particular state
y and then entering x. The overall probability of arriving in x results from summing up these
probabilities.

Markov chains tend, under certain assumptions sketched in the next section, to stabilize a�er
su�cient iterations, in the sense that a long-term probability5(x) of encountering the process in
state x exists. This stationary distribution satis�es

5(x)=
∑

y
5(y) ·Tx

y , (48.5)

which essentially results from removing the k-indices from Equation (48.4). Intuitively, removing
the stage-indices k means that Equation (48.5) now applies, in the long term, for any stage k.

Given that the long-term behavior of Algorithm 48.1 shapes the predictions made with MATSim,
and updated information its characterization in terms of the stationary distribution of a corre-
sponding Markov chain is of interest. To obtain a Markov chain representation of Algorithm 48.1,
one needs to specify (i) what variables in MATSim represent the states of that chain and (ii) what
transition distribution underlies the MATSim simulation logic.

A state variable must provide su�cient information to simulate a process further into the future.
Candidates for MATSim’s state space arethe demand D, the network condition C and the informa-
tion Z. Of these, only the information Z quali�es as a state variable: If one knows Zk, it is possible
to draw the next day’s travel demand Dk+1 based on Equation (48.1), to insert this demand into
Equation (48.2) and obtain the network conditions Ck+1 and to �nally use both Ck+1 and Zk to
obtain an updated Zk+1 through Equation (48.3). This last step is what disquali�es D and C as
state variables because an evaluation of Equation (48.3) is impossible without having Z in the state
space.

Letting Xk
= Zk, the transition distribution hence needs to express how the information Zk avail-

able to the population in iteration k carries over to the information Zk+1 available in iteration k+ 1.
This relationship is given by

Tx
y =

∑
c

∑
d

P(Zk+1
=x | Ck

=c,Zk
=y)P(Ck

=c | Dk
=d)P(Dk

=d | Zk
=y). (48.6)

Each argument of the double sum represents the probability of one particular sequence of
given information y, resulting travel demand d, resulting network conditions c and updated
information x. The double sum over all possible travel demand realizations d and network con-
ditions c then accounts for the fact that there are many di�erent such sequences through which
one can start out at y and end up at x.

This completes the representation of MATSim in terms of a Markov chain. The next section
illustrates practical uses of this representation.

48.3 Existence and Uniqueness of MATSim Solutions

The long-term (stationary) behavior of a Markov chain can be derived from its transition function.
This also leads to useful insights for MATSim, despite of the complexity of its transition function
Equation (48.6).
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Two key properties are aperiodicity and irreducibility. Informally, a Markov chain is aperiodic
if all of its states can be visited at irregular times; Figure (48.2) provides an example. It is irre-
ducible if it can reach any other state from any given initial state with one or more transitions; see
Figure (48.3) for an example. Aperiodicity and irreducibility are essential when it comes to
long-term predictions, where (i) aperiodicity guarantees that the concrete iteration in which one
evaluates the simulation does not play a role and (ii) irreducibility ensures that every possible
future system state can be reached (predicted) by the simulation. If both properties are given, the
Markov chain has the following properties (Ross, 2006):

1. A unique stationary distribution exists. The simulation process attains this distribution a�er
many iterations, independently of its initial state.

2. It is feasible to compute statistics of the stationary distribution from a single simulation run,
meaning that it is not necessary to run replications.

With respect to MATSim, the following holds:

• Periodicity is already broken if a nonzero probability of staying in the same state exists. This
is likely to be the case in MATSim, for instance because the following sequence of events may
occur by chance: (i) No agent uses plan innovation, (ii) all agents select the same plan as in
the previous iteration, (iii) the mobility simulation creates identical congestion and travel time
patterns as before, meaning that Zk from Equation (48.3) remains the same as Zk−1. Practically,
this means that all plan scores stay unchanged.
More intuitively: Even if the system returns multiple times exactly to a state where it has been
before, it unlikely that it does so in the same number of steps.

• With plan innovation (see Sections 4.5, 4.5.3 and 47.3.2.3) switched on, irreducibility cannot
be postulated:
Every time a new plan is added somewhere, the previous state space subspace where the plan
was not available cannot be reached any more until that plan is removed; similarly, every time
a plan is removed, the previous state space subspace where the plan was available cannot be
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Figure 48.2: Example of (a)periodicity
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Figure 48.3: Example of (ir)reducibility
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reached any more until the plan is re-created again. (Chapter 49 discusses this in greater detail
and also suggests a solution for this problem.)
Even if plans creation and removal could be modeled such that irreducibility was guaranteed,
the resulting process dynamics would be slow due to the state space size.

• With plan innovation switched o�, MATSim in its standard con�guration is likely to be
irreducible. This is only “likely”, because the notion of a “standard con�guration” itself is
not rigorously speci�ed here. Arguments behind this follow Cascetta (1989), who presents a
related result for a much simpler, trip-based tra�c simulation that only allows for route choice.
Observing that travel plans are, technically, paths in a rather complicated decision network,
one can then carry this result over to MATSim. See also Nagel et al. (2000) and Flötteröd et al.
(2011).

• When scores are additionally forced to their expected values (Section 3.3.4), the system even-
tually draws agent behavior from �xed choice distributions, thus varying independently from
one iteration to the next.
If con�g option ChangeExpBeta is used, some correlation is maintained between choices in
subsequent iterations, even though the long-term choice distributions remain unchanged.

In summary, a mathematical framework exists allowing a rather rigorous characterization of the
outcome of MATSim’s relaxation process. It turns out that MATSim, in its current form, is not
necessarily a “well-behaved” stochastic process; however, casting it into this framework enables a
structured approach to developing the simulation logic further. An example of how to go about
this is given in Chapter 49.

48.4 Analyzing Simulation Outputs

Many of the models used in MATSim are stochastic. Examples are the discrete choice models used
for plan selection or the randomized selection of the next vehicle to enter a congested downstream
link in the mobility simulation. The reason for this randomness is that real mobility and trans-
portation processes are not completely understood. The insertion of randomness represents the
uncertainty remaining in the modeling.

This uncertainty may apply to both (i) model inputs, meaning that random variables are com-
puted once before a simulation run and then kept �xed (for instance, the random generation of a
synthetic population) and to (ii) processes, meaning that random variables are computed through-
out the simulation (for instance, the repeated evaluation of discrete choice models). Technically, if
a MATSim scenario is simulated R times with di�erent random seeds one obtains r = 1 . . .R inde-
pendent simulation outputs yr . Note that, while the raw outputs are plans and event �les, the actual
quantities for which yr stands here are numerical in the majority of applications.

Given that one has used di�erent random seeds, y1, . . . ,yR constitute independent draws from a
distribution5(Y). This means that if one performed a huge number of simulation runs and plotted
a (possibly multidimensional) histogram of the y values, then this histogram would eventually
attain the shape of 5(Y). It is important to acknowledge that stochastic simulation outputs are a
desirable consequence of stochasticity inserted elsewhere in the simulation; just as a determinis-
tic model output is a truthful representation of its input consequences, a stochastic model output
contains a truthful representation of the prediction uncertainty resulting from uncertainties in its
input and its process speci�cation.

To help intuition, one may think in the following of yr as a large vector containing travel times
on all links in all one-hour time bins as observed during the last iteration of the rth simulation run.
Questions like these may then be asked:
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• What travel times can one expect on average?
• What is the travel time variability?
• How probable are travel times beyond some threshold θ?
• ...

This list can be arbitrarily continued. It turns out that most (if not all) of these questions can also
be expressed symbolically. For instance:

• What travel times can one expect on average?

E{Y} =
∑

y
y ·5(Y = y) (48.7)

This asks for the expected value of the simulation output distribution.
• What is the travel time variability?

VAR{Y} =
∑

y
(y−E{Y})2 ·5(Y = y) (48.8)

This asks for the variance (or, for multidimensional outputs, the variance-covariance matrix).
• How probable are travel times beyond some threshold θ?

Pr(Y ≥ θ) =
∑

y
1(y ≥ θ) ·5(Y = y) (48.9)

This expression merely sums up the probabilities of all simulation outputs that exceed the
threshold.

• ...

This enumeration of symbols reveals a common structure. The mathematical formulation of
each question can be written in the form

∑
y

m(y) ·5(Y = y) (48.10)

with di�erent speci�cations of m(y) (see Table 48.1).
By de�nition, Equation (48.10) is the expectation E{m(Y)} given that Y is distributed according

to its stationary distribution 5(Y). Combining this with the observation that the mean over a

quantity of interest corresponding m(y)
E{Y} y

VAR{Y} (y−E{Y})2
Pr(Y ≥ θ) 1(y ≥ θ)

. . . . . .

Table 48.1: Examples of m functions.
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sample converges to its expectation as the number of samples grows (the Law of Large Numbers),
one obtains

E{m(Y)} =
∑

y
m(y) ·5(Y = y) (48.11)

= lim
R→∞

1
R

R∑
r=1

m(yr) (48.12)

≈
1
R

R∑
r=1

m(yr) for a �nite R, (48.13)

where the simulation outputs yr , r = 1 . . .R, are independent draws from5(Y).
Now recall that initially certain questions about simulation outputs were asked. The Equa-

tion (48.11)(�rst row) represents exactly these questions in a formal way–and Equation (48.13) (last
row) provides a simple method for computing answers to these questions. It reads as follows:

1. De�ne the function m(y) that represents the question of interest.
2. Perform R independent simulation runs and obtain the outputs y1, . . . ,yR.
3. Compute m(yr) for all r = 1 . . .R and average these numbers.

Returning to the example questions, one thus obtains the following:

• What travel times can one expect on average?

E{Y} ≈
1
R

R∑
r=1

yr (48.14)

Not surprisingly, this turns out to be the mean value over all simulated travel times.
• What is the travel time variability?

VAR{Y} ≈
1
R

R∑
r=1
(yr −E{Y})2 (48.15)

This is the empirical variance of the simulated travel times. (Note that in practice E{Y} needs
to be replaced by its estimator.)

• How probable are travel times beyond some threshold θ?

Pr(Y ≥ θ) ≈
1
R

R∑
r=1

1(yr ≥ θ) (48.16)

This divides the number of times the threshold was exceeded by the total number of experi-
ments, i.e. it yields the frequency of the event of interest.

• ...
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Revisiting Section 48.3, it may be possible to make these computations more e�cient. If (i) there
is no uncertainty in the model inputs and (ii) the simulation uses �xed choice sets, then it could
be feasible to compute the above statistics by averaging over many stationary iterations of a single
simulation run instead of having to run a large number of replications to convergence.

Practically, all of this is just a starting point. Important questions, such as how precise these
estimates are, how many runs one needs to obtain a certain level of precision, etc. are not answered
here; Ross (2006) is a good starting point for further reading.

48.5 Summary

This chapter attempted to clarify certain mechanisms underlying MATSim’s iterative solution
scheme. The speci�cation of MATSim’s model (components) was distinguished from MATSim’s
iterative solution algorithm. It was stressed that the behavioral day-to-day interpretation of
MATSim is not to be taken literally; realism can only be expected from the long-term process
behavior.

This long-term behavior was then related to the properties of the iteration logic using the the
Markov chain formalism. MATSim was phrased as such a chain, with its state space comprised
of the information available for replanning. This representation was exploited to observe that the
long-term distribution of MATSim is likely to exist and be unique if the plan choice sets are a priori
�xed.

It further was explained that (i) there are good reasons for the stochasticity both in MATSim’s
inputs and outputs and that (ii) instead of avoiding stochasticity where it constitutes a truthful
representation of uncertainty, one should access adequate statistical techniques to make sense of it.






