
UP 033 odijk odijk_printer 2017/12/15 15:57 Page 71 #91

CHAPTER 6

FoLiA in Practice: The Infrastructure of a Linguistic
Annotation Format

Maarten van Gompela,c, Ko van der Sloota,c, Martin Reynaerta,b,c

and Antal van den Boschc
aCentre for Language and Speech Technology, Radboud University, bTilburg Centre for

Cognition and Communication, Tilburg University, cCentre for Language Studies, Radboud
University

ABSTRACT
We present an overview of the so�ware and data infrastructure for FoLiA, a Format for
Linguistic Annotation developed within the scope of the CLARIN-NL project and other
projects. FoLiA aims to provide a single uni�ed �le format accommodating a wide variety
of linguistic annotation types, preventing the proliferation of di�erent formats for di�erent
annotation types. FoLiA is being developed in a bottom-up and practice-driven fashion. We
have invested mainly in the creation of a rich infrastructure of tools that enable develop-
ers and end-users to work with the format. This work will present the current state of this
infrastructure.

6.1 Introduction

CLARIN’s aim is to deliver an infrastructure for researchers that work with language data and tools.
This is impossible without agreeing on standards with regard to data formats. Standardisation is
an important prerequisite for good interoperability between the many language tools that have
emerged within and outside of the scope of the CLARIN project, and to ensure the various datasets
released are usable in practice.

In the �eld, however, we o�en encounter an abundance of ad-hoc formats. We de�ne ad-hoc
formats to be data formats that are characterised by most of the following traits:

• They are only used once, o�en by one speci�c tool or for just one speci�c purpose;
• They are poorly formalised or not formalised at all, i.e. there is a lack of a formal schema and

semantics;

How to cite this book chapter:
van Gompel, M, van der Sloot, K, Reynaert, M and van den Bosch, A. 2017. FoLiA in Practice: The Infras-

tructure of a Linguistic Annotation Format. In: Odijk, J and van Hessen, A. (eds.) CLARIN in the Low
Countries, Pp. 71–81. London: Ubiquity Press. DOI: https://doi.org/10.5334/bbi.6. License: CC-BY 4.0

https://doi.org/10.5334/bbi.6


UP 033 odijk odijk_printer 2017/12/15 15:57 Page 72 #92

72 CLARIN in the Low Countries

• They are poorly documented;
• They are o�en rigid and hard to extend.

The use of such ad-hoc formats can be considered the opposite of proper standardisation and is
to be avoided in any large infrastructure project.

CLARIN adheres to the following principles when it comes to standardisation:

• Open standards are preferred over proprietary standards;
• Formats and protocols should be:

•well documented
•veri�able
•proven (being used in practice);

• Text-based formats are (where possible) preferred over binary formats.

Fortunately, there are various initiatives for standardisation resulting in annotation formats that
transcend the ad-hoc level, each with their own merit, and ours being of one of them. At the
onset of CLARIN-NL, however, the Dutch and Flemish Natural Language Processing (NLP) com-
munity lacked such a proper standard with respect to linguistically annotated text, and ad-hoc
formats were prevalent in the �eld. In the scope of CLARIN-NL project TTNWW (see chapter 7),
the NWO project DutchSemCor, and the STEVIN project SoNaR, FoLiA (Format for Linguis-
tic Annotation) was developed as a solution to accommodate the representational needs of these
projects.

The aim of FoLiA is to provide a practical standard, following a generic paradigm, for the linguis-
tic annotation of primarily written text. For this purpose, a wide variety of linguistic annotation
types is supported.

In the current chapter, we intend to focus on the practical nature of the format, or rather, on the
infrastructure that is built around the format, the so�ware that supports it, and the ways in which it
has been put to use in CLARIN and beyond. Section 6.3 will explain the philosophy behind FoLiA
and its infrastructure.

Earlier work (van Gompel and Reynaert, 2013) addresses the motivation for the creation of
FoLiA. In summary, FoLiA sprung from a limited corpus format used in the Dutch and Flemish
NLP communities (Apperloo, 2006), at a time and place where a more comprehensive format was
needed for various corpora and tools in development. Existing solutions o�en did not su�ciently
meet the needs at the time, were not mature yet, or were simply not well known.

FoLiA currently represents one of various possible solutions. We claim that its merit is best
decided on its practical usability with respect to the user’s speci�c purpose. Focus on the prac-
tical dimension, i.e. the availability of hands-on tools and libraries, was in fact a key reason for the
creation of yet another format. The tools, libraries and existing FoLiA-delivered corpora described
in the current work are intended to help people assess whether it is an appropriate solution for their
tasks.

The aforementioned work (van Gompel and Reynaert, 2013) presents a comparison with sim-
ilar initiatives such as the D-Spin Text Corpus Format (TCF), PAULA XML, XCES, as well as
with more abstract frameworks such as LAF (Linguistic Annotation Format) and comprehensive
text-encoding formats such as TEI. In summary, the prior study observes that rather than a format,
LAF (Ide and Romary, 2004) is an abstract framework which o�ers a greater level of abstraction
and genericness than FoLiA, whereas FoLiA is more speci�c and aims at the practical level. This
makes FoLiA more readily adoptable in so�ware tools. In the comparison with TEI (Burnard and
Bauman, 2007), it was observed that TEI is very extensive and speci�c when it comes to encod-
ing text structure, but FoLiA is more speci�c when it comes to linguistic annotation types, for
which TEI only o�ers more abstract solutions. TEI is very extensive and therefore fairly complex;



UP 033 odijk odijk_printer 2017/12/15 15:57 Page 73 #93

FoLiA in Practice: The Infrastructure of a Linguistic Annotation Format 73

schemas may come in various �avours, as elements can be adapted by users in many ways. FoLiA
o�ers one single speci�c solution instead, the format is a given, and the �exibility to customise is
deliberately limited to the data categories or tagsets, in the form of set de�nitions. Initiatives such
as TCF (Heid et al., 2010), PAULA XML (Zeldes et al., 2013), and also NAF (Fokkens et al., 2014)
are more similar to FoLiA, as they are less abstract and provide practical usability in so�ware.
Di�erences come down to paradigm choices, sustainability, tool availability and documentation
maturity, and especially to variation in coverage of available linguistic annotation types and text
structure elements.

Full documentation of FoLiA is available elsewhere (van Gompel, 2014). It o�ers a reference
guide to all elements and attributes that FoLiA de�nes. A brief summary of key features will
be repeated in Section 6.2. Section 6.4 subsequently presents the currently available so�ware
infrastructure for FoLiA. Section 6.5 presents some corpora that have been delivered in FoLiA.

6.2 Overview

FoLiA is an XML-based format and de�nes speci�c XML elements for structure annotation (e.g.
paragraphs, sentences, word tokens, lists, �gures, etc.) and linguistic annotation (e.g. part-of-
speech, dependency relations, syntax, named entities, etc.). FoLiA makes use of a combination
of inline and stand-o� annotation, making proper use of the hierarchical nature of XML and
facilitating the job for parsers where possible. FoLiA does not de�ne any linguistic categories; the
format is fully language and tagset independent as tagsets are de�ned separately in FoLiA Set Def-
initions by users and never prescribed by FoLiA itself. These tagsets can in turn be related to data
category registries. Validation can proceed on a shallow level, against a RelaxNG schema, as well
as on a deep level which validates the used tagsets against the set de�nition �les.

The sets are at the core of the FoLiA paradigm; annotation elements take a generic attribute
named ‘class’. These classes pertain to a set and are de�ned by whatever set de�nition the user
decides to use. The set de�nition de�nes all allowed classes and allows for links with data category
registries for formal semantic closure.

Other generic attributes besides ‘class’ are attributes to denote the annotator of a particular
annotation, the annotator type (human or machine), the con�dence level of the annotation, the
time of the annotation, and more.

FoLiA also allows for various types of higher-order annotation, such as the ability to include
alternative annotations, as well as extensive support for corrections on annotations. Moreover,
there is the possibility to link other modalities, such as imagery or audio fragments of speech,
to structural elements. So, even though FoLiA is primarily a format to annotate text documents,
speech transcripts are supported as well.

For metadata CLARIN-NL was committed to the CMDI standard (Broeder et al., 2011).
Although FoLiA has simple native support for metadata, we see no sense in reinventing the wheel
and FoLiA is ideally used in combination with an external metadata format such as CMDI when-
ever extensive metadata is desired. A reference to the metadata �le can be made in the header of
the FoLiA document.

The FoLiA paradigm laid out here is schematically illustrated in Figure 6.1 (van Gompel, 2014).
A more in-depth treatise is beyond the scope of this current chapter.

6.3 Our philosophy

Recalling the CLARIN principle that a format should be proven and used in practice, FoLiA has
been designed in a bottom-up manner taking especially this principle to heart. Our focus is to solve
real problems people face in the �eld with regards to their linguistic representation needs, and to



UP 033 odijk odijk_printer 2017/12/15 15:57 Page 74 #94

74 CLARIN in the Low Countries

Figure 6.1: A schematic overview of the most important aspects of the FoLiA paradigm, including
XML examples (van Gompel, 2014).

do so in a generic manner. The ambition is to deliver a single uni�ed �le format that can e�ectively
handle a multitude of annotation needs in a generic way. The main motivation is to prevent the need
to switch formats whenever an extra annotation type is introduced, and to prevent the scenario in
which a plethora of di�erent formats are used for di�erent annotation types.

It is nevertheless always conceivable that a user’s particular need is not yet covered by the latest
version of FoLiA; in such cases we gladly hear from the user and expand FoLiA where necessary,
in collaboration with the user. The development of FoLiA has already proceeded for several years
in such a collaborative work�ow, and various annotation types have been added in close contact
with end-users both from within CLARIN and from beyond.

In our philosophy, the creation of a �le format is useless if an infrastructure of tools to work with
said format is not simultaneously created. This has therefore been our main focus over the years
and will be the subject of the next section.

6.4 So�ware Infrastructure

When we speak of a FoLiA so�ware infrastructure we refer to a published set of so�ware, from
whatever sources and for whatever architecture, that enable people to work with FoLiA. Such an
infrastructure in simple terms encompasses anything that can either process or deliver the data in
the format. We can subdivide it into the following components:

1. programming libraries;
2. tools for validation;
3. tools for conversion from and to other formats;
4. tools for visualisation;
5. tools for searching/querying;
6. editing tools and



UP 033 odijk odijk_printer 2017/12/15 15:57 Page 75 #95

FoLiA in Practice: The Infrastructure of a Linguistic Annotation Format 75

7. special-purpose tools; i.e. specialised tools that use the format but are not necessarily
focused on it. In the case of FoLiA, this includes Natural Language Processing or Information
Retrieval tools that use the format as input and/or output.

The programming libraries and tools that are purely designed to visualise, manipulate, or convert
the format in basic ways can be considered part of a core layer of the infrastructure, whereas the
special-purpose tools can be considered to constitute an outer layer.

As FoLiA is an XML-based format, the rich and well-established XML infrastructure is open to
its users as well. In fact, almost all FoLiA tools e�ectively rely on the existing so�ware infrastructure
available for XML.

It is possible to not use any of the FoLiA-speci�c tools and use the infrastructure o�ered by XML
directly. For instance, one can use XPath to query a FoLiA document and XSL to transform it.
To do so e�ectively, however, the user/developer needs to be more familiar with the intricacies of
FoLiA than when using a tool from the FoLiA infrastructure that abstracts over this for the bene�t
of the user/developer.

Many of the tools of the core layer are available as command-line tools and are bundled in two
so�ware packages: there is a Python-based FoLiA Tools package1 and a FoLiA Utilities package2

consisting of tools written in C++. Both are built on the respective libraries. There is some overlap
in tools, but each also o�ers distinct tools the other does not. It is therefore recommended to install
both.

These packages, and all other tools pertaining to the FoLiA infrastructure which have been
developed at Radboud University, are bundled in our LaMachine distribution.3 LaMachine greatly
facilitates installation of this so�ware and is a recommended starting point if you work with FoLiA.
It is available as a Virtual Machine, a Docker package or a local compilation & installation script.

We subscribe strongly to the CLARIN principle that standards should be open and place a similar
requirement on the infrastructure components we build.

6.4.1 Programming Libraries

At the heart of the FoLiA infrastructure are the programming libraries that enable developers to
work with documents in the format in their so�ware. We ourselves o�er libraries for both Python
and for C++.

Python is a widely popular high-level programming language in the academic world, and the
NLP world in particular. The Python library for FoLiA enables developers to quickly integrate
support for FoLiA in their scripts. The library is part of the larger PyNLPl library4 and is also
available from the Python Package Index.5 It is extensively documented and comes with tutorials
for users.

The Python library su�ers from the performance drawback that any high-level interpreted lan-
guage has. Whenever faster processing is required, or integration in high-performance tools is
desired, libfolia,6 the FoLiA library for C++, o�ers a better solution. The library is modelled a�er
the Python library, so both are similarly structured, employ a similar syntax and the respective
authors try their best to keep the libraries in sync.

1 https://pypi.python.org/pypi/FoLiA-tools
2 https://github.com/LanguageMachines/foliautils
3 https://proycon.github.io/LaMachine/
4 https://github.com/proycon/pynlpl
5 https://pypi.python.org/pypi/PyNLPl
6 https://github.com/languagemachines/libfolia

https://pypi.python.org/pypi/FoLiA-tools
https://github.com/LanguageMachines/foliautils
https://proycon.github.io/LaMachine/
https://github.com/proycon/pynlpl
https://pypi.python.org/pypi/PyNLPl
https://github.com/languagemachines/libfolia


UP 033 odijk odijk_printer 2017/12/15 15:57 Page 76 #96

76 CLARIN in the Low Countries

A third popular language in the �eld is Java, but no Java-based FoLiA library is available yet
to our knowledge. There are a number of Java-based tools in the FoLiA infrastructure that have
nevertheless been developed without a common underlying FoLiA library.

6.4.2 Validation

We already touched upon the notion of shallow and deep validation. FoLiA’s syntax is formalised
in a RelaxNG schema, and shallow validation can therefore be done using any XML validator with
support for RelaxNG.

The tools foliavalidator and folialint7 also perform shallow validation, and their usage is
strongly recommended, or should even be considered mandatory, for anybody producing FoLiA
documents. Moreover, the former tool can optionally perform deep validation as well, i.e. it can
validate the used classes against the set de�nitions.

6.4.3 Conversion

The FoLiA tools and utilities collections contain tools for the conversion from and to various
di�erent other formats:

• Conversion to plaintext
• Conversion to HTML
• Conversion to simple columned data or to CSV
• Conversion from/to reStructuredText8

• Conversion from/to DCOI XML format (Apperloo, 2006)
• Conversion from the Alpino XML format (Bouma et al., 2000)
• Conversion from ALTO XML format9

• Conversion from hOCR HTML format (Breuel, 2007)
• Conversion from PAGE XML format10

Conversions may be limited by the source or target format. Conversion to FoLiA’s predecessor
DCOI XML, for instance, is only possible for the subset of elements that DCOI supports. Similarly,
conversion to reStructuredText is limited to text, its structure and markup, and does not include
linguistic annotations.

Besides the in-house developed FoLiA tools, third parties also make available converters from
or to FoLiA. A notable case is OpenConvert,11 developed by the former Institute for Dutch Lexi-
cology (INL), now Institute for the Dutch Language (INT), which can convert from TEI, plaintext,
ALTO, Microso� Word, and HTML to FoLiA.

6.4.4 Visualisation

An XSL stylesheet is available to visualise FoLiA documents. It renders documents and unobtru-
sively pops up with annotation information when hovering over structural items such as words. A
major advantage is that this form of visualisation can be conducted entirely client-side in nearly
every web browser. The folia2html conversion tool also employs the same stylesheet.

7 Part of respectively FoLiA Tools and FoLiA Utilities
8 http://docutils.sourceforge.net/rst.html
9 http://www.loc.gov/standards/alto/
10 http://www.primaresearch.org/tools
11 https://github.com/INL/OpenConvert

http://docutils.sourceforge.net/rst.html
http://www.loc.gov/standards/alto/
http://www.primaresearch.org/tools
https://github.com/INL/OpenConvert


UP 033 odijk odijk_printer 2017/12/15 15:57 Page 77 #97

FoLiA in Practice: The Infrastructure of a Linguistic Annotation Format 77

6.4.5 Searching

Tools for searching and querying FoLiA documents can be divided into two categories:

1. In-document search and
2. Document retrieval systems / corpus search tools.

At a low level, in-document search can be conducted with the command-line tool foliaquery,
part of the FoLiA tools. This tool reads one or more FoLiA documents in memory (sequentially),
executes a search query, and presents the matching results. This, however, is not a solution that
scales to large numbers of documents as it takes a fair amount of time and memory to process a
document.

Full document retrieval systems do not rely on such costly real-time processing of the FoLiA doc-
uments, but construct smart indices from the original documents and operate on these indices.
The corpus retrieval engine BlackLab12, based on Apache Lucene, and the front-end WhiteLab
(Reynaert et al., 2014) (see chapter 19) are examples of this. WhiteLab was developed in the
CLARIN-NL project OpenSoNaR13, and can operate on FoLiA documents, as does BlackLab. So
far, these engines typically only supported a simpler subset of the annotation types supported by
FoLiA, such as Part-of-Speech tags and lemmas. At the time of writing, there is collaboration, and
some competition, between the various developers in the Netherlands to support span annotation
types such as dependency relations, syntax and named entities. Another FoLiA-capable search and
retrieval system called Multi-Tier Annotation Search (MTAS) has been promised by the Meertens
Institute, and builds upon Solr and Lucene. It is being developed in the scope of the Nederlab
project (Brugman et al., 2016) and the CLARIAH project. This system, however, is still in early
stages of development and has not been released yet.

As FoLiA is a highly expressive format, the need arose for a query language tuned speci�cally to
the idiosyncrasies of FoLiA. Although FoLiA can be perfectly searched with XPath, formulating a
robust query is not always trivial and may require more in-depth knowledge of FoLiA. The FoLiA
Query Language (FQL) was designed as a higher-level query language, covering all of FoLiA, to
make querying FoLiA documents easier. FQL is implemented alongside the FoLiA Python library
in PyNLPl. It is documented as part of the FoLiA documentation (van Gompel, 2014).

FQL is a new and expressive query language speci�cally attuned to the FoLiA paradigm. People
in the �eld are likely more accustomed to the simpler and established query languages such as
CQL, the Corpus Query Language (Christ, 1994), developed at the Corpora and Lexicons group,
IMS, at the University of Stuttgart in the early 1990s. For this reason, PyNLPl includes a library
that converts CQL to the more expressive but verbose FQL. The low-level query tool makes use
of both these libraries. In the next section we will discuss FQL further and introduce higher-level
tools in the FoLiA infrastructure that make use of it.

6.4.6 Editing

FQL has been designed in such a way that it is not just a language for passive querying, but a
language that allows active manipulation of FoLiA documents. In other words, FQL is to FoLiA
as SQL is to relational database tables. Therefore, the foliaquery command-line tool and the FQL
library it relies on can be used not just to passively retrieve information, but also to actively edit
documents.

12 https://github.com/INL/BlackLab
13 https://github.com/TiCCSoftware/WhiteLab

https://github.com/INL/BlackLab
https://github.com/TiCCSoftware/WhiteLab


UP 033 odijk odijk_printer 2017/12/15 15:57 Page 78 #98

78 CLARIN in the Low Countries

A FoLiA document server 14 has been constructed as a back-end for the editing of FoLiA doc-
uments. It is implemented as a RESTful webservice, with a simple human-interface to manually
enter queries, and takes care of on-demand loading and unloading of documents in memory and
serialising them to disk. It maintains a browsable document repository, which features git version
control support.

Neither the command-line tool nor the document server o�ers an interface adequate for human
end-users to easily work with. To provide such an environment, we have been developing the
FoLiA Linguistic Annotation Tool (FLAT)15. It is a modern web-application that o�ers an
interface for the visualisation and editing of FoLiA documents. Under the hood, user-interface
interactions are translated to FQL queries and communicated to the aforementioned FoLiA
document server. The motivation for the creation of FLAT, as opposed to the adaption of existing
web annotation environments, was the desire for a solution that seamlessly integrates with FoLiA
and adopts the same paradigm. Di�erent design choices implied it would be easier to build this
from the ground up.

Although not yet supporting all of FoLiA at the current stage, FLAT has already been used
successfully in several annotation projects with student assistants at Radboud University. Further
development of FLAT is planned for the CLARIN-NL successor project CLARIAH, with the aim
of providing a mature editing environment covering all of FoLiA. FLAT is intended to be deployed
as a platform for crowd-sourcing annotation tasks in CLARIAH and other projects.16

6.4.7 Special-purpose tools

The previous sections discussed tools that can be considered part of the core layer. In this section
we will discuss the outer layer of tools; these are tools that either take FoLiA as their input or deliver
it as their output to perform a speci�c and specialised task, usually an NLP (annotation) task. It is
a most essential layer to the infrastructure and consists of tools such as:

• Ucto17– An advanced rule-based tokeniser and sentence-splitter for a variety of languages. Sup-
ports FoLiA input and output. Can be used to bootstrap plaintext to tokenised FoLiA (van
Gompel et al., 2012).

• Frog18 – An NLP suite for Dutch, implementing tokenisation (through Ucto), Part-of-Speech
tagging, Lemmatisation, Dependency Parsing, Named Entity Recognition, Shallow Parsing and
Morphological Analysis. Supports FoLiA input and output.

• CLAM19 – Turns command-line NLP tools into RESTful webservices with an interface for
human end-users. It integrates the FoLiA viewer to visualise FoLiA documents. (van Gompel,
2012)

• TICCL20 – Text-Induced Corpus Clean-up (Reynaert, 2010). Supports FoLiA input and out-
put. Used in the CLARIN-NL projects TICCLops21 and @PhilosTEI22 (Reynaert, 2014), see
chapter 32.

14 https://github.com/proycon/foliadocserve
15 https://github.com/proycon/flat
16 The PARSEME project for example, http://typo.uni-konstanz.de/parseme/, has recently adopted FLAT for the

annotation of Multi-Word Expressions
17 https://languagemachines.github.io/ucto
18 https://languagemachines.github.io/frog
19 https://proycon.github.io/clam
20 https://github.com/martinreynaert/TICCL
21 Available in the CLARIN infrastructure at: http://ticclops.clarin.inl.nl/ticclops/
22 Available in the CLARIN infrastructure at: http://ticclops.clarin.inl.nl/philostei/

https://github.com/proycon/foliadocserve
https://github.com/proycon/flat
http://typo.uni-konstanz.de/parseme/
https://languagemachines.github.io/ucto
https://languagemachines.github.io/frog
https://proycon.github.io/clam
https://github.com/martinreynaert/TICCL
http://ticclops.clarin.inl.nl/ticclops/
http://ticclops.clarin.inl.nl/philostei/


UP 033 odijk odijk_printer 2017/12/15 15:57 Page 79 #99

FoLiA in Practice: The Infrastructure of a Linguistic Annotation Format 79

• Cesax23 – A co-reference editor for syntactically annotated XML corpora. Supports FoLiA
import and output through conversion.

• T-Scan24– A Dutch text analytics tool for readability prediction (Pander Maat et al., 2014).
• Colibri Core25– A tool for the computation of corpus statistics on n-grams and skipgrams in

a quick and memory-e�cient way. It can import FoLiA documents, which it subsequently
compresses to an internal optimised binary format.

• Gecco26 – Generic Environment for Context-Aware Correction of Orthography: A spelling
correction engine fully based on FoLiA. Powers Valkuil.net and soon also Fowlt.net.

• FoLiA-langcat27– Performs language detection, built on TextCat28. Part of the FoLiA utilities.
• FoLiA-stats29 – Performs simple n-gram statistics on FoLiA documents. Part of the FoLiA

utilities.
• PaQu30 – A web application for the analysis of Dutch texts based on dependency parses

computed using Alpino (Bouma et al., 2000). PaQu supports FoLiA input (see chapter 23).

6.5 Data Infrastructure

A format’s usefulness is not just determined by the tools available, but also by the data sets delivered
in the format. The following corpora are currently delivered in FoLiA:

• Basilex – The Basilex corpus collects Dutch written language by children, and contains about
11.5 million words. It includes lexical semantic sense annotation (Tellings et al., 2014).

• DutchSemCor – The DutchSemCor project delivered a Dutch corpus annotated with lexical
semantic senses. Part of the annotation was manual, and a part was tagged automatically with a
Word Sense Disambiguation system trained on the manual part. The corpus is based on SoNaR,
as well as extra sources (Görög and Vossen, 2010).

• VU-DNC – A diachronic Dutch newspaper corpus (2 million tokens) with annotations of
subjectivity. Provides a gold standard for OCRed newspapers published in 1950. (Vis et al.,
2012)

• SoNaR-500 – The STEVIN project SoNaR delivered a 540 million word corpus of written Dutch
(including Flemish) from numerous sources. The corpus is annotated with Part-of-Speech tags,
lemmas, and named entities (Oostdijk et al., 2013).

• Nederlab – The Nederlab project attempts to collect all digitised texts relevant to the history
of Dutch language, culture and heritage (circa 800 – present) in one user-friendly and tool-
enriched open access web interface31 (Brugman et al., 2016).

In addition to corpora, the data part of the infrastructure also consists of a growing number of
Set De�nitions.32

23 http://erwinkomen.ruhosting.nl/software/Cesax/
24 https://github.com/proycon/tscan
25 https://proycon.github.io/colibri-core
26 https://github.com/proycon/gecco
27 https://github.com/LanguageMachines/foliautils
28 http://odur.let.rug.nl/∼vannoord/TextCat/
29 Also part of the FoLiA Utilities
30 https://github.com/rug-compling/paqu
31 http://www.nederlab.nl/onderzoeksportaal/
32 https://github.com/proycon/folia/tree/master/setdefinitions

http://erwinkomen.ruhosting.nl/software/Cesax/
https://github.com/proycon/tscan
https://proycon.github.io/colibri-core
https://github.com/proycon/gecco
https://github.com/LanguageMachines/foliautils
http://odur.let.rug.nl/~vannoord/TextCat/
https://github.com/rug-compling/paqu
http://www.nederlab.nl/onderzoeksportaal/
https://github.com/proycon/folia/tree/master/setdefinitions


UP 033 odijk odijk_printer 2017/12/15 15:57 Page 80 #100

80 CLARIN in the Low Countries

6.6 Conclusion

In this chapter we have described the rich infrastructure that has been developed around the For-
mat for Linguistic Annotation (FoLiA). We emphasised the need for a practical and proven format,
in line with CLARIN’s standardisation principles, and hence placed the focus for this chapter on the
so�ware and data infrastructure. A more extensive overview of FoLiA itself and of the motivation
for its inception was presented in earlier work (van Gompel and Reynaert, 2013).

Continued e�orts in the CLARIN-NL successor project CLARIAH ensure that the developments
on the infrastructure surrounding FoLiA will continue in the foreseeable future. FoLiA XML is the
pivot format in the project ‘Philosophical Integrator of Computational and Corpus Libraries’, or
PICCL, (Reynaert et al., 2015) which is part of CLARIAH.

Acknowledgements

We gratefully acknowledge the funding provided by CLARIN-NL and its successor CLARIAH in
a range of projects. Martin Reynaert further acknowledges being funded by NWO in the Nederlab
project.

References

Wilko Apperloo. 2006. XML basisformaat D-Coi: Voorstel XML formaat presentational markup.
Technical report, Polderland Language and Speech Technology.

Gosse Bouma, Gertjan van Noord, and Rob Malouf. 2000. Alpino: Wide-coverage Computational
Analysis of Dutch. In Walter Daelemans, Khalil Sima’an, Jorn Veenstra, and Jakub Zavrel, edi-
tors, CLIN, volume 37 of Language and Computers - Studies in Practical Linguistics, pages 45–59.
Rodopi.

Thomas Breuel. 2007. The hOCR Microformat for OCR Work�ow and Results. In Proceedings
of the Ninth International Conference on Document Analysis and Recognition, volume 2, pages
1063–1067. IEEE Computer Society.

Daan Broeder, Oliver Schonefeld, Thorsten Trippel, Dieter Van Uytvanck, and Andreas Witt. 2011.
A pragmatic approach to XML interoperability – the Component Metadata Infrastructure
(CMDI). In Balisage: The Markup Conference 2011, volume 7.

Hennie Brugman, Martin Reynaert, Nicoline van der Sijs, René van Stipriaan, Erik Tjong Kim Sang,
and Antal van den Bosch. 2016. Nederlab: Towards a single portal and research environment
for diachronic Dutch text corpora. In Nicoletta Calzolari et al., editor, Proceedings of the Tenth
International Language Resources and Evaluation Conference (LREC-2016), Portorož, Slovenia.
ELRA.

Lou Burnard and Syd Bauman, editors, 2007. TEI P5: Guidelines for Electronic Text Encoding and
Interchange. Text Encoding Initiative Consortium.

Christ, Oliver (1994) A modular and �exible architecture for an integrated corpus query system.
Proceedings of COMPLEX’94: 3rd Conference on Computational Lexicography and Text Research.
Budapest, Hungary. pp. 23–32.

Antske Fokkens, Aitor Soroa, Zuhaitz Beloki, German Rigan, Willem Robert van Hage, and Piek
Vossen. 2014. NAF: The NLP annotation format. Technical report.

Attila Görög and Piek Vossen. 2010. Computer assisted semantic annotation in the DutchSem-
Cor project. In Proceedings of the Seventh International Conference on Language Resources and
Evaluation, LREC-2010, pages 1220–1226, Valletta, Malta.

Ulrich Heid, Helmut Schmid, Kerstin Eckart, and Erhard Hinrichs. 2010. A Corpus Representation
Format for Linguistic Web Services: The D-SPIN Text Corpus Format and its Relationship with



UP 033 odijk odijk_printer 2017/12/15 15:57 Page 81 #101

FoLiA in Practice: The Infrastructure of a Linguistic Annotation Format 81

ISO Standards. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan
Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of the Seventh
International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta,
May. European Language Resources Association (ELRA).

Nancy Ide and Laurent Romary. 2004. International standard for a linguistic annotation frame-
work. Natural Language Engineering, 10(3-4):211–225.

Nelleke Oostdijk, Martin Reynaert, Véronique Hoste, and Ineke Schuurman. 2013. The construc-
tion of a 500-million-word reference corpus of contemporary written Dutch. In Essential Speech
and Language Technology for Dutch: Results by the STEVIN-programme, chapter 13. Springer
Verlag.

Henk Pander Maat, Rogier Kraf, Antal van den Bosch, Nick Dekker, Maarten van Gompel, Suzanne
Kleijn, Ted Sanders, and Ko van der Sloot. 2014. T-Scan: a new tool for analyzing Dutch text.
Computational Linguistics in the Netherlands Journal, 4.

Martin Reynaert, Matje van de Camp, and Menno van Zaanen. 2014. OpenSoNaR: user-driven
development of the SoNaR corpus interfaces. In Proceedings of COLING 2014: System Demon-
strations, pages 124–128, Dublin, Ireland. Dublin City University and Association for Compu-
tational Linguistics.

Martin Reynaert, Maarten van Gompel, Ko van der Sloot, and Antal van den Bosch. 2015. PICCL:
Philosophical Integrator of Computational and Corpus Libraries. In Proceedings of CLARIN
Annual Conference 2015 – Book of Abstracts, pages 75–79, Wrocław, Poland. CLARIN ERIC.

Martin Reynaert. 2010. Character confusion versus focus word-based correction of spelling and
OCR variants in corpora. International Journal on Document Analysis and Recognition, 14:
173–187. DOI: 10.1007/s10032-010-0133-5.

Martin Reynaert. 2014. Synergy of Nederlab and @PhilosTEI: diachronic and multilingual Text-
Induced Corpus Clean-up. In Proceedings of the Ninth International Language Resources and
Evaluation Conference (LREC’14), Reykjavik, Iceland. ELRA.

Agnes Tellings, Micha Hulsbosch, Anne Vermeer, and Antal van den Bosch. 2014. Basilex: an
11.5 million words corpus of Dutch texts written for children. Computational Linguistics in
the Netherlands Journal, 4:191–208, 12/2014.

Maarten van Gompel and Martin Reynaert. 2013. FoLiA: A practical XML Format for Linguistic
Annotation - a descriptive and comparative study. Computational Linguistics in the Netherlands
Journal, 3.

Maarten van Gompel, Ko van der Sloot, and Antal van den Bosch. 2012. Ucto: Unicode Tokeniser.
Reference Guide. Technical report, Tilburg Centre for Cognition and Communication, Tilburg
University and Radboud Centre for Language Studies, Radboud University Nijmegen.

Maarten van Gompel. 2012. CLAM: Computational Linguistics Application Mediator. Documen-
tation. Technical report, Tilburg Centre for Cognition and Communication, Tilburg University
and Radboud Centre for Language Studies, Radboud University Nijmegen.

Maarten van Gompel. 2014. FoLiA: Format for Linguistic Annotation. Documentation. Technical
report, Radboud University Nijmegen.

Kirsten Vis, José Sanders, and Wilbert Spooren. 2012. Diachronic changes in subjectivity and
stance – A corpus linguistic study of Dutch news texts. Discourse, Context & Media, 1(2–3):
95–102. The view from here, there and nowhere: discursive approaches to journalistic stance.

Amir Zeldes, Florian Zipser, and Arne Neumann. 2013. PAULA XML Documentation. Rapport de
recherche, Institut für Deutsche Sprache und Linguistik - IDSL , INRIA Saclay - Ile de France,
Universität Potsdam.


	Chapter 6: FoLiA in Practice: The Infrastructure of a Linguistic Annotation Format
	6.1 Introduction
	6.2 Overview
	6.3 Our philosophy
	6.4 Software Infrastructure
	6.4.1 Programming Libraries
	6.4.2 Validation
	6.4.3 Conversion
	6.4.4 Visualisation
	6.4.5 Searching
	6.4.6 Editing
	6.4.7 Special-purpose tools

	6.5 Data Infrastructure
	6.6 Conclusion
	Acknowledgements
	References




