
CHAPTER 50

Queueing Representation of Kinematic Waves

Gunnar Flötteröd

50.1 Introduction

MATSim comes with a number of mobsims (cf. Sections 4.3, 43.1); the most important are the so-
called QSim and JDEQSim. These di�er from the implementation perspective (time-stepping vs.
event-based, degree of parallelism), but all are (at least approximate) solvers of the same underlying
tra�c �ow model. The purpose of this chapter is to relate MATSim’s mobsims to the existing tra�c
�ow theory. There are other simulation packages rooted in the same underlying modeling concepts
(Tian et al., 2007; Zhou and Taylor, 2014).

The �ow-density relationship (also called FD (Fundamental Diagram)) shown in Figure 50.1 is
at the heart of MATSim’s tra�c �ow model. Given a long, homogeneous road, it predicts average
�ow q (in vehicles per time unit) through any cross-section of that road, given an average vehicle
density % (in vehicles per length unit) on that road.

The FD is de�ned as the minimum of a sending function S(%) (solid) and a receiving function
R(%) (dashed), resulting overall in a triangular curve parametrized by free �ow speed v, maximum
density %̂ and backward wave speed w. The maximum velocity is an observable parameter that
can be set in the network �le (freespeed attribute of the link element). The maximum density
equals one over the length of a vehicle (effectivecellsize attribute of the links element) for a
single-lane link and needs to be multiplied with the number of lanes (permlanes attribute of the
link element), otherwise. The backward wave speed turns out to be the (negative of the) ratio of
vehicle length to the safety time gap adopted by drivers in congested conditions. This parameter
is fairly constant; a vehicle length of 7.5 meters and a time gap of 2 seconds leads to a value of
(minus) 13.5 kilometers per hour. The backward wave speed can be set in the JDEQSim through
the gapTravelSpeed parameter; it cannot currently be set in the QSim.

The considered FD alone applies only in stationary conditions, where it predicts that (i) �ow
increases linearly with density at low densities (i.e., in uncongested conditions); (ii) �ow decreases
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Figure 50.1: Fundamental diagram.

linearly with density at high densities (i.e., in congested conditions); and (iii) in between, it attains
a maximal value constituting the �ow capacity

q̂ =
vw%̂

v+w
(50.1)

of the link. This parameter represents the maximum throughput of the link in the absence of any
other �ow constraint (such as downstream tra�c lights or other bottlenecks, which are discussed
further below).

A realistic representation of non-stationary tra�c �ow (where density and �ow change over
space and time) is possible by inserting the FD into a continuity equation (which intuitively models
vehicle conservation, in the sense that vehicles cannot vanish or spontaneously appear on a road
segment without on- and o�-ramps). This leads to the KWM (Kinematic Wave Model) of traf-
�c �ow (Lighthill and Witham, 1955; Richards, 1956), where the sending and receiving function
receive an intuitive interpretation: The instantaneous �ow across any interface, possibly with dif-
ferent densities prevailing and FDs applying up- and downstream of that interface, is de�ned by (i)
inserting the density upstream of the interface into the upstream sending function, (ii) inserting
the density downstream of that interface into the downstream receiving function and (iii) taking
the minimum of these two quantities (Daganzo, 1994; Lebacque, 1996). Intuitively: The �ow is
limited by what can be sent from upstream and what can be received downstream, but otherwise
it is maximized.

The remainder of this chapter expresses MATSim’s link model (Section 50.2) and its node model
(Section 50.3) in terms of the sending and receiving function framework of the KWM. Some tech-
nical detail is omitted from the presentation for the sake of readability; pointers to the literature
are provided.

50.2 Link Model

To compute �ows entering and leaving a link, one needs to know how much �ow can maximally
enter the link and how much �ow can maximally leave the link. Both constraints depend on the
internal (congestion) state of the link. In symbols, one is interested in the instantaneous receiv-
ing �ow rate R of the link’s upstream end and the instantaneous sending �ow rate S of the link’s
downstream end. Multiplying these rates by the duration δ of a simulation time step then yields
the maximum number of vehicles that can enter or leave the link during a time step.

MATSim also needs to compute these quantities; how it does so is rooted in Newell’s “simpli-
�ed theory of kinematic waves” (Newell, 1993), which provides a tracktable recipe for computing
�ow and density anywhere in a link, given that one keeps track only of the �ows at the link’s up-
and downstream interface. In the continuum model (i.e., one that allows for real-valued �ows and
densities at real-valued locations and times) speci�ed by Newell (1993), the cumulative in- and



Queueing Representation of Kinematic Waves 349

out�ow of a link are de�ned as

Nin(t) =
∫ t

0
qin(z)dz (50.2)

Nout(t) =
∫ t

0
qout(z)dz (50.3)

where t denotes time, qin and qoutare the instantaneous in- and out�ow rates (in vehicles per time
unit) of the link and an initially (at t = 0) empty link is assumed. From MATSim’s vehicle-discrete
perspective, cumulative in�ow (out�ow) at a given point in time hence represents the total number
of vehicles having entered (le�) the link up to that point in time.

Yperman et al. (2006); Yperman (2007) observe that if Newell’s theory allows computation of
instantaneous densities anywhere in a link, then it also allows computation of densities at the up-
and downstream ends of that link. Inserting these densities in the link’s sending and receiving
function then allows expressing the sending and receiving �ows as functions of time-shi�ed cumu-
lative in- and out�ows only, with the time-shi�s speci�ed according to the original Newell (1993)
formula:

R(t) = min
{
%̂L−

[
Nin(t)−Nout(t+ δ− L/|w|)

]
, q̂δ

}
(50.4)

S(t) = min
{[

Nin(t+ δ− L/v)−Nout(t)
]
, q̂δ

}
(50.5)

where L is the link length and δ is the (small) discrete time step length. Yperman (2007) provides
some intuition for this rather formal speci�cation.

The connection to MATSim can now be made explicit by labeling the two bracketed terms in
Equation (50.4) and Equation (50.5) as “upstream queue” (UQ) and “downstream queue” (DQ)
(Osorio et al., 2011; Osorio and Flötteröd, published online in Articles in Advance):

UQ(t) = Nin(t)−Nout(t+ δ− L/|w|) (50.6)
DQ(t) = Nin(0, t+ δ− L/v)−Nout(t). (50.7)

These expressions can be given a recursive meaning. Evaluating UQ(t)−UQ(t− δ) yields
[Nin(t)−Nin(t− δ)]− [Nout(t+ δ− L/|w|)−Nout(t− L/|w|)], which under the assumption
that �ow rates are held constant throughout a simulation time step simpli�es into δ[qin(t− δ)−
qout(t− L/|w|)]. From this (and symmetric operations for DQ), one obtains

UQ(t) = UQ(t− δ)+ δ
[
qin(t− δ)− qout(t− L/|w|)

]
(50.8)

DQ(t) = DQ(t− δ)+ δ
[
qin(t− L/v)− qout(t− δ)

]
. (50.9)

These recursive de�nitions turn out to be the continuum version of how the JDEQSim updates its
link model: In every time step, all vehicles that have just le� the link are taken out of the DQ and all
vehicles that have entered the link L/v time units ago (corresponding to free-�ow travel time) are
inserted into the DQ. Similarly, all vehicles that have just entered the link are put into the UQ and
all vehicles that have le� the link L/|w| time units ago are only now taken out of the UQ. Further,
inserting (50.6) and (50.7) into (50.4) and (50.5) yields

R(t) = min
{
%̂L−UQ(t), q̂δ

}
(50.10)

S(t) = min
{

DQ(t), q̂δ
}
, (50.11)

which again corresponds to how JDEQSim evaluates the boundary conditions of a link: The
amount of �ow allowed to enter the link is limited by the space in its UQ and the amount of �ow
allowed to leave the link is limited by the number of vehicles in its DQ.
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A mobsim that implements the rules Equation (50.8), Equation (50.9), Equation (50.10) and
Equation (50.11) implements a KWM-consistent link model. This is almost the case for the JD-
EQSim, which, in its implementation as of December 2014, exhibits the sole inconsistency of not
limiting the link’s in�ow to its �ow capacity. The QSim turns out to be a particular instance of the
same model where backward wave speed is set to |w| = L/δ. Inserting this into Equation (50.8)
leads to

UQ(t) = UQ(t− δ)+ δ
[
qin(t− δ)− qout(t− δ)

]
, (50.12)

which represents the total number of vehicles in the entire link. This corresponds to QSim behavior,
where in�ow to a link is limited only by the available space in the link as a whole. Letting |w| = L/δ
means that the QSim behaves like a KWM with an extremely high backward wave speed, which
physically means that a queue on the link does not dissolve from its downstream end but moves
”en block” over the link.

50.3 Node Model

All mobsims in MATSim implement the same node model. Surprisingly, this node model can be
traced back at least to (Cetin et al., 2003, under the name of “fair intersections”), while the literature
establishing its consistency with the KWM is only a few years old (Tampere et al., 2011; Flötteröd
and Rohde, 2011; Corthout et al., 2012).

Nodes in MATSim have no spatial dimension; they merely connect up- and downstream links.
Tampere et al. (2011) specify a set of requirements for a (continuum) node model to be consistent
with the KWM. They require that the �ow through the node shall be maximized subject to the
following constraints:

1. Flows are non-negative and conserved within the node. This means that vehicles cannot drive
backwards and they must neither disappear nor appear within the node.

2. Flow ratios comply with exogenously speci�ed turning fractions. For instance, if it is speci�ed
that 20 % of the out�ow of link i shall turn into link j, then the amount of �ow that actually
advances from link i into link j shall indeed be 20 % of the �ow that actually leaves link i.

3. Sending �ows of upstream links and receiving �ows of downstream links are not exceeded.
This is explained in Section 50.2.

4. The invariance principle of Lebacque and Khoshyaran (2005) is satis�ed. The most important
intuitive implication of this principle is that the advancement of a queuing vehicle is not
a�ected by the vehicles behind it.

5. A “supply constraint interaction rule” is satis�ed. It de�nes how the limited receiving �ow of
a downstream link is shared by competing upstream links: in practical terms, a right-of-way
speci�cation.

Flötteröd and Rohde (2011) specify an “incremental node model” that satis�es these requirements
and also provide an intuitive, computationally e�cient solution algorithm. In each simulation time
step, this algorithm incrementally (hence the name) moves �ow from upstream links into down-
stream links. It does so such that all the previously enumerated constraints are satis�ed anytime
during the transfer, terminating only once no more �ow can be moved. Thus, the ultimately moved
�ows also comply with all constraints and are maximal.
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Now consider the code documentation of MATSim’s queuesim.QueueNode.moveNode (as of
December 2014):

Moves vehicles from the inlinks’ buffer to the outlinks where
possible. The inLinks are randomly chosen, and for each link all
vehicles in the buffer are moved to their desired outLink as long as
there is space. If the front vehicle in a buffer cannot move across
the node because there is no free space on its destination link,
the work on this inLink is finished and the next inLink’s buffer is
handled.

This is an informal description of how the incremental node model of Flötteröd and Rohde
(2011) works, given that one adopts the conventions that the sending �ow of a link is stored in its
“bu�er” and that the receiving �ow of a link is labeled here as free space in (the upstream queue of)
that link. A more detailed inspection of the underlying implementation reveals no inconsistencies
with incremental node model speci�cation.

There are two aspects of the MATSim node model that are not re�ected by the above code
comment.

• The sending �ow of an upstream link may be limited by an out�ow capacity below the �ow
capacity Equation (50.1) of that link; for instance, to approximate a capacity reduction resulting
from a downstream tra�c light. This is still consistent with the framework described above.

• The selection probability of “inLinks” is proportional to their �ow capacity, meaning that links
with higher capacity send, on average, more �ow. This is again consistent with Flötteröd and
Rohde (2011) and constitutes a concrete “supply constraint interaction rule”, as required by
Tampere et al. (2011).

The relative simplicity of MATSim’s intersection logic may be re�ned in many ways. For instance,
turning pockets may be added and con�icts within intersections may be modeled (cf. Chapter 12).
However, some caution is needed when implementing such extensions. The present node model
is, due to its simplicity, guaranteed to yield unique node �ows. This property needs to be revisited
when implementing more complicated speci�cations (Corthout et al., 2012).

50.4 Summary

This chapter demonstrated that MATSim’s mobility simulation is already very close to imple-
menting a particle-discretized instance of the KWM. For full consistency, one needs to (i) use the
JDEQSim (or to implement a realistic backward wave speed in the QSim) and to (ii) limit the in�ow
of a link by its �ow capacity (which corresponds to the maximum of its triangular FD).






