CHAPTER 11

Curating the Typological Database System

Menzo Windhouwer® 12, Alexis Dimitriadis? and Vesa Akerman®
aMeertens Institute, ®Utrecht University, “Data Archiving and Networked Services (DANS)

ABSTRACT

The Typological Database System (TDS), which provides integrated access to a dozen inde-
pendently created typological databases, was launched in 2007. Due to the pace of change in
web technologies, the original software has for some time been edging toward obsolescence.
CLARIN-NL granted funding to the TDS Curator project to migrate this valuable resource
to a more durable platform, archiving the data and converting its interface to a true web
service architecture that can continue to provide interactive access to the data. This chapter
describes the architecture of the new system, and the Integrated Data and Documentation
Format (IDDF) on which it is based.

11.1 Introduction

The Typological Database System (TDS) is a web-based resource that provides integrated access
to a collection of independently created typological databases. Typological databases are used for
research in linguistic typology, ‘the study of patterns that occur systematically across languages’
(Croft, 2003), and consulted by linguists and others looking for a high-level, cross-linguistic view
of particular phenomena. Combining several typological databases provides advantages in scale, as
well as the opportunity to look for relations among features. The TDS was developed with support
from NWO grant 380-30-004 / INV-03-12 and from participating universities, and launched in
2007. It provides access to and extended documentation for its component databases, through a
uniform structure and search interface (Dimitriadis et al., 2009). However, web technologies evolve

! Corresponding author: menzo.windhouwer@meertens.knaw.nl
2 At the time of the CLARIN-NL TDS Curator project (2011-2012), Menzo Windhouwer was working at the Max Planck
Institute for Psycholinguistics.

How to cite this book chapter:

Windhouwer, M, Dimitriadis, A and Akerman, V. 2017. Curating the Typological Database System. In:
Odijk, J and van Hessen, A. (eds.) CLARIN in the Low Countries, Pp. 123-132. London: Ubiquity
Press. DOL https://doi.org/10.5334/bbi.11. License: CC-BY 4.0

mailto:menzo.windhouwer@meertens.knaw.nl
https://doi.org/10.5334/bbi.11

124 CLARIN in the Low Countries

rapidly and thus pose a challenge to software sustainability. Through its Project Call 1, CLARIN-NL
granted funding to the TDS Curator project to save the valuable TDS resource in a durable, archival
environment and convert access to it into a true web service architecture, thus safeguarding future
access to the TDS data.

11.2 The Architecture of the Typological Database System

Figure 11.1 gives a global overview of the TDS architecture. Data from the component databases
(at the bottom of the diagram) is pushed through an extensive, manually supervised Extraction,
Transformation and Loading (ETL) processing chain and integrated into one data resource, based
on knowledge in various knowledge bases (right side of the diagram). The end user interacts with
the system to access the data and knowledge bases through its web interface (at the top). The
knowledge bases contain all TDS knowledge about the component databases and the linguistic
domain. This consists of various interlinked specifications: a set of database-specific ontologies,
one global linguistic ontology and (currently) two topic taxonomies. Maintenance of the knowl-
edge base is supported by the TDS Workbench (right) and other custom-built or general-purpose
tools, including an ontology editor.

To guarantee continued access to the valuable data integrated into this system, the TDS Curator
project addressed three weak spots in the architecture:

1. Although parts of the knowledge base already used W3C recommendations - the Web
Ontology Language (OWL; W3C, 2016a) for the linguistic ontology, and the Simple Knowl-
edge Organization System (SKOS; W3C, 2016b) for the topic taxonomies - the core of the
system, consisting of the collection of data imported, merged and enriched from the compo-
nent databases and the database-specific knowledge basis, relies on a proprietary format. This
format had already been cleaned up, generalised and formalised as the XML-based Integrated
Data and Documentation Format (IDDF; Windhouwer and Dimitriadis, 2008), but IDDF

Web interface

g | Navigating and searching |
Té | Querying | | Reasoning |
4
TDS data
o
2 4 3
= 05
g | Enriching | ontology %
I . :
s ? Merging < Local S
o (]
- | Transforming | databa§e
8 ontologies
| Importing |
metadata

component data&ls—ej

Figure 11.1: The TDS system architecture.

Curating the Typological Database System 125

had not actually been implemented in the TDS system architecture. The TDS Curator project
transformed the TDS data into the IDDF format, and they are now archived by the Data
Archiving and Networked Services (DANS)’ in their online EASY archiving system.

2. The original TDS engine did not fully implement a client-server architecture, i.e., a clean
separation into a back end (the server) and interface components communicating through
an explicit Application Programming Interface (API). Instead, features and technical idiosyn-
crasies of the framework chosen for the interface were deeply interwoven into the ragtag API.
In the TDS Curator, an IDDF-driven web API was designed and implemented. This API can
potentially be used by other tools besides the current TDS interface.

3. The TDS web interface, which predated HTML5, was based on the Backbase UI frame-
work (Van Emde Boas and Ilinsky, 2009). Unfortunately, this turned out to be a poor
technology bet, as support for this framework decreased rapidly and now has completely dis-
appeared. In the TDS Curator project, the interface and the underlying technology have been
renewed. However, the world of browser technology remains highly volatile, so unfortunately
sustainability problems do remain.

The next sections discuss these problem areas and the implemented solutions in more depth.

11.2.1 Integrated Data Documentation Format

The aim of the TDS project was to integrate a number of typological databases, allowing access
to and correlating their information using one uniform interface. The basic technological require-
ments for this integration are close to the Extraction, Transformation and Loading (ETL) phase in
data warehousing. However, a not-so-common need was to add extensive documentation (part of
the database-specific knowledge base) to the data and data structures loaded from the component
databases. Many of the databases were built over the years by researchers for their own purposes,
and had virtually no documentation. The linguistic knowledge designer of the TDS had to solicit
this information from these researchers and make it digitally available to the end-users of the TDS
(see Figure 11.2). This was done by storing the knowledge in the knowledge base and adding this

warehouse

[«]
A

T RN Loading
-~ knowledge AN
(age N __ .
N extraction /f > Transformation
T v T Extraction

g I
==

Figure 11.2: Extraction, Transformation and Loading (ETL).

3 DANS was the (candidate) CLARIN centre partner in the project and provides the project's longterm archiving
services.

126 CLARIN in the Low Countries

information to the data source in the transformation stage of the ETL phase, resulting in a heavily
interconnected combination of data and documentation in the data warehouse.

An IDDF document consists of two major sections: one for the documentation and one for the
data. The IDDF schema is expressed in Relax NG (ISO, 2008) and Schematron (ISO, 2006a), both
of which are validation languages for XML documents. The hierarchical nature of XML makes it
very suitable for IDDF documents. To avoid having to manually overspecify hundreds of data fields
and values, and in order to capture some of their interrelationships and higher-level organisation,
data fields and values are grouped and documented in so-called semantic contexts. For example,
one context contains all the fields related to language identification, while other contexts contain
all the fields for particular linguistic phenomena. Data and its documentation will always have to
be shown in its semantic context to allow proper interpretation, e.g. to know that this name is the
name of a language and not the name of an author of a scientific article. As it is possible to embed
a semantic context within another context, a hierarchy, i.e., a tree, of semantic contexts can be
built.

Many typological databases consist entirely of information describing languages as a whole
(e.g., ‘basic word order’); such databases are effectively structured as a single relational table,
and can be hierarchically represented by nesting semantic contexts, starting from the root con-
text for language. However, more sophisticated typological databases contain data about multiple
constructions per language, while other data sources contain information that is not restricted to
single languages (e.g., a universal phoneme inventory). This requires more than one hierarchy,
i.e., one for languages and one for each of these other entity types, which can refer to each other
through foreign/primary key relationships. The data model thus becomes a network of hierarchies.
In Figure 11.3 each type of semantic context is represented by a triangle with a specific colour and
size. The documentation section describes the types of semantic context, while in the data sec-
tion they are instantiated - here, the same type can appear multiple times. Relationships between
entities are shown by directed edges.

The major aim of the documentation section is to describe the data, which will be stored in
the data section. The basic documentation building blocks, to which data will get associated later
on, are called notions: this term was introduced to make a distinction between the fields and their

warehouse
documentation data

Figure 11.3: Integrated Data and Documentation.

Curating the Typological Database System 127

values that get loaded from a component database, on the one hand, and more formal knowledge
base building blocks like concepts and topics, on the other hand. Notions are grouped together in
small hierarchies, which correspond to the previously introduced semantic contexts. For example,
the notions title, name, affiliation and email could be grouped together under an author notion.
Notions that are at the root of such a hierarchy are called top notions, i.e., author would be a top
notion. Semantic contexts are themselves organised into a bigger hierarchy; for example, the author
context can be reused in a bibliographic entry semantic context. Notions that are uppermost in
these bigger hierarchies are called root notions and are required to have a primary key. (By their
nature, as mentioned above root notions are also top notions.)

In addition to documenting the data, it is also important to track their provenance. For this,
the documentation section defines scopes. Each notion belongs to a scope, and only data sources
with access to that scope can actually instantiate the notion. On first glance this seems to hinder
integration, but actually scopes are nested, and it is allowed that a descendant scope instantiates
notions from higher-level scopes. Scopes at the lowest level are tied to one of the actual data sources,
while the higher-level scopes express semantic similarity.

<iddf:documentation>
<iddf:scope xml:id="tds">
<iddf:label>Typological Database System</iddf:label>
<iddf:scope xml:id="pi">
<iddf:label>Phoneme Inventories</iddf:label>
<iddf:scope xml:id="upsid” type="datasource”>
<iddf:label
>UCLA Phonological Segment Inventory</iddf:label>
</iddf:scope>
</iddf:scope>
</iddf:scope>
<iddf:notion xml:id="n1" scope="tds" name="identification”
type="top">
<iddf:label>Language identification</iddf:label>
<iddf:1link rel="datcat"
href="http://www.isocat.org/datcat/DC-3932"/>
<iddf:notion scope="tds"” name="name">
<iddf:label>Name</iddf:label>
<iddf:values datatype="FREE"/>
</iddf:notion>
</iddf:notion>
<iddf:notion scope="tds” name="language" type="root"”>
<iddf:label>Language</iddf:label>
<iddf:description
>0ne of the world’s languages</iddf:description>
<iddf:keys>
<iddf:key>
<iddf:literal>l-iso-tba</iddf:literal>
<iddf:label>Aikan\~a</iddf:label>
</iddf:key>
</iddf:keys>
<iddf:notion ref="n1"/>
</iddf:notion>
</iddf:documentation>

The example above shows an IDDF documentation section. It declares scopes for TDS, phoneme
inventories and the UCLA Phonological Segment Inventory Database (UPSID) data source,* and
the top notion identification which is reused by the root notion language. The example also hints at

4 For an overview of and brief introduction to the component databases included in the TDS see Dimitriadis et al.
(2009).

128 CLARIN in the Low Countries

some additional features, which help to extend the coverage of the documentation or make explicit
the nature of the data:

« labels and descriptions;

* (key) value enumerations, which can be defined as total or partial;

* links from scopes, notions, (key) values or other documentation elements to (online) resources
with further information, e.g. a data category specification or website;

* a hierarchy of relation types, which can be instantiated by links;

* a hierarchy of data types to be used by (key) values, which are in general of a semantic nature,
e.g. the ‘vernacular tier’ of a glossed sentence, and can be used to trigger specific data renderers
in the user interface;

* annotations, which can be used in the data section, e.g. to mark the confidence level of a data
value or add a comment; and

* associated resources, e.g. an ontology or a taxonomy, which can be referred to by links.

Once notions have been declared, the data section is populated with instances of them, as shown
below.

<iddf:data xmlns:tds=".../tds"” xmlns:pi=".../pi"
xmlns:sylltyp=".../sylltyp” xmlns:upsid=".../upsid”>
<tds:language key="l-iso-tba” iddf:srcs="upsid">
<tds:identification>
<tds:name iddf:src="sylltyp">
<iddf:value ann="v1" src="sylltyp"
>Wari’ (Tubarã0)</iddf:value>
<iddf:annotation ann="v1" type="marker"
>UNSURE</iddf:annotation>
</tds:name>
<tds:name iddf:src="upsid”>Huari</tds:name>
</tds:identification>
</tds:language>
</iddf:data>

Notice that the schema as defined in the documentation section is very loosely interpreted. For
example, IDDF has no facilities to declare the cardinality of the notion name, and depending on
the actual data loaded from the component databases there can be from zero to many instantia-
tions in the data section. In this example there are two names, one (‘Wari’ (Tubarao)’) provided
by SyllTyp (Syllable Typology Database) and the other (‘Huari’) by the UPSID database. The only
mandatory information is provenance information and keys for root notions. Some information
can be expressed in multiple ways, so a canonical form is defined. This form can be created for any
IDDF document and simplifies the development of tools, i.e., the tools can use the canonical path
to this information and disregard the alternative paths.

Finally, validation of IDDF documents consists of two phases, implemented with the help of
Relax NG, Schematron, NVDL (ISO, 2006b) and XSLT (W3C, 2007):

1. validate the documentation section against the general IDDF RELAX NG + Schematron
schema;

2. validate the data section against the document-specific IDDF RELAX NG + Schematron
schema created by a transformation to make explicit the schema implied by the documenta-
tion section.

The resulting XML-based IDDF provides a rich container for the collected semi-structured data
and their documentation. An IDDF document is sufficiently self-describing to support data use
and integrity checks, even without the software infrastructure described in this chapter.

Curating the Typological Database System 129

In the TDS Curator project the ETL tool chain was left intact, i.e., the tool chain still generates
the TDS internal format, with the resulting integrated data source then converted into IDDE

11.2.2 An IDDF-based Application Programming Interface

The TDS interface is browser-based: the user’s web browser interacts via HT'TP with the back-end
server. The back-end server provides access to IDDF documents, so it is natural to base the client-
server interaction, the API, on concepts natural to IDDE The following methods are provided by
the APL:

IDDF collection
documents()

Gets all IDDF documents stored in the system, and their description.
IDDF documentation section
annotation(file, ann)

Gets the definition of a specific annotation.
annotations(file)

Gets the definitions of all annotations.
context(file, notion, keys=no, values=no, desc=no)

Gets the definition of a specific semantic context identified by the top notion.
context-links(file, notion)

Gets all the semantic contexts that refer to a specific top notion.
datatype(file, datatype)

Gets the definition of a specific data type.
datatypes(file)

Gets the definition of all data types.
fulltext-filter(file, notion, text, labels=no)

Gets matches of the given text within the context of a specific root notion.
fulltext-search(file, text, labels=no)

Gets notions which match the given text.
key(file, notion, key)

Gets the definition of a specific key value of a specific notion.
keys(file, notion, random=25)

Gets the definitions of all key values of a specific notion.
links(file)

Gets an overview of all links between semantic contexts.
notion(file, notion, keys=no, values=no, desc=no)

Gets the definition of a specific notion.
relation(file, rel)

Gets the definition of a specific relation.
relations(file)

Gets the definition of all relations.
root-links(file, notion)

Gets the notions that refer to a specific root notion.
roots(file)

Gets all the root notions.
roots-links(file)

Get the notions that refer to a root notion.
scope(file, scope)

Get the definition of a specific scope.

130 CLARIN in the Low Countries

scopes(file)
Get the definition of all scopes.
value(file, notion, value)
Get the definition of a specific value of a specific notion.
values(file, notion, random=25)
Get the definition of all values of a specific notion.
IDDF data section
context-instance(file, id, labels=no, deep=no)
Gets a single instance of a specific top notion.
query(file, query, labels=no, pageSize?, startFrom=1)
Query the data section.
root-instances(file, notion, values=no, labels=no, pageSize?, startFrom=1)
Gets all instances of a specific root notion.

The eXist XML database management system (eXist Solutions, 2016) was selected as back-end
technology, and the API was implemented using a mixture of XQuery (W3C, 2010) and XSLT. The
APT uses a Remote Procedure Call (RPC) approach with a single endpoint, i.e., the actual method
invoked is specified as a parameter. For example, the first API method is invoked as follows:

tds.dans.knaw.nl/tds-services.xql?service=documents

11.2.3 A New Web User Interface

The old TDS web interface was deeply intertwined with the old TDS API, so a new web interface
was implemented for the new, IDDF-based TDS API. Since HTML5 was still under develop-
ment and its support in browsers was still immature in 2010, Adobe Flash was selected for the
implementation of this front end.”

In this new interface, user interaction starts with the selection of an IDDF document to inspect.
For inspection, there are two major options: explore the instances using the language browser (see
Figure 11.4), or build and execute a query. The query interface follows the three-stage model that
the old interface also used:

1. exploration of the notions to find the ones which can help answering the user’s question;
2. formulation of the actual query by specifying selection and projection criteria; and

3. execution of the query, followed by the display and inspection of the results.

The new interface lacks some of the more advanced features of the old web interface, e.g.
geographical views of result sets and joins between different entity types (roots). This is due to
a combination of limited development resources and a desire to avoid features that are particularly
likely to stop working over time because of reliance on volatile browser technology or third-party
services. Unfortunately, support for Adobe Flash as a client-side technology is also diminishing
in favour of HTMLS5, and there is a possibility the former might disappear soon. But, while the
web client may already be approaching the beginning of obsolescence, the clean IDDF-based API
created in the TDS Curator project ensures that the server side is isolated, and that less work
will be needed when the time comes to create the next, HTML5-based, web interface. However,
even when based on HTMLS5 a state-of-the-art interface also depends on the interactivity pro-
vided by JavaScript; and this area is still ridden by browser differences, although less so than in the

> The Meertens Institute, the project partner who developed the new frontend, has extensive experience with Adobe
Flash

Curating the Typological Database System 131

TDS - Language Browser Databases Language Browser Query Bullder History Help

]
Language
IXo 4| | General ' Phenomena | Sources
X686 Language name
1A ISO code (SIL code)
IXegwi Language type (ISO 639-3)
Abidji Genetic affiliation (Ethnologue)
Abipon Location of language
Abipon Location of language Source Longituc Latitude Key Source
Abkhazian Georgia (Russia) ‘ stressTyp 41 43.08 d1e1698635 wals
Abua Abkhaz ASSR within Georgia. Also in syllTyp Loz
Turkey. 41 43 d1e1706174s| stressTyp
Abun tressTyp-
Eurasia ‘ graz
Acatepec Me'phaa
Achagua
Achinese Comments
Achumawi Comment Source
Aché (wals) stressTyp
Acoli Reference: | topfoc
Adamawa Fulfulde Web source: www.lang .ac.jpl proj 1 i pdf

Figure 11.4: The TDS language browser (tds2.dans.knaw.nl).

times of the first TDS interface. Overcoming these differences is hardly achievable for a small-scale
development team, so one has to rely on major frameworks. However, the availability and persis-
tence of these frameworks is still largely ruled by hypes, i.e., it remains a challenging problem to
select a technology/framework with a long-term horizon.

The approach of the TDS Curator project was to design a generic back-end data structure and
API, so that an economy of scale can eventually be achieved through reuse of these components
for other resources. Even if changes in browser technology outstrip resources for keeping the TDS
web service in operation, the self-documenting format of the IDDF at least preserves and makes
available the accumulated data in static, portable form.

11.3 Conclusion

CLARIN-NLs TDS Curator project provided crucial support for the sustainability of this data
source. The collected data of the TDS have been safely archived at DANS as a single, integrated
IDDF document and in the form of a separate IDDF document for each database. The IDDF-based
web service is operational, making it possible to browse and query these documents interactively
for the medium-term. Unfortunately the fast cycles of appearance and disappearance of client-side
technology are already catching up with the new interface, so that a more sustainable solution is
still needed in this area.

In CLARIAH, the successor to the CLARIN-NL project, work is planned to integrate new com-
ponent databases into the TDS. This will likely involve curation of the tools used in the ETL phase.
Work on the web interface is not yet foreseen in CLARIAH.

Another interesting direction for the TDS data is the Linked Data approach. The steadily growing
Linguistic Linked Open Data (LLOD) cloud (Chiarcos, Hellmann, Nordhoff et al., 2012; LID-
ERproject, 2016) already contains many valuable linguistic resources, and the TDS would add
typological knowledge to it. While the original TDS project predated the rise of Linked Data tech-
nologies, the use of semantic contexts in IDDF resembles the use of components in the Component
Metadata Data Infrastructure (CMDI; Broeder, Windhouwer, Van Uytvanck et al., 2012) as used by
CLARIN. A successful mapping of CMDI to Linked Data has already been created (see chapter 8),
and the patterns learned can most likely be used to map IDDF to Linked Data.

132 CLARIN in the Low Countries

Acknowledgements

The CLARIN-NL TDS Curator project was a collaboration between the University of Utrecht,
DANS, the Meertens Institute and the Max Planck Institute for Psycholinguistics. The authors
would like to thank these partner institutions and especially their colleagues: Marjan Grootveld,
Marc Kemps-Snijders and Rob Zeeman.

References

D. Broeder, M. Windhouwer, D. Van Uytvanck T. Goosen and T. Trippel (2012). CMDI: a
Component Metadata Infrastructure. In the Proceedings of the Metadata 2012 Workshop on
Describing Language Resources with Metadata: Towards Flexibility and Interoperability in the
Documentation of Language Resources. LREC 2012 Istanbul, Turkey, May 22, 2012.

C. Chiarcos, S. Hellmann, S. Nordhoff, S. Moran, R. Littauer, J. Eckle-Kohler, I. Gurevych,
S. Hartmann, M. Matuschek and C.M. Meyer (2012). The Open Linguistics Working Group.
LREC 2012. Istanbul, Turkey, May 23-25, 2012.

W. Croft (2003). Typology and Universals, 2" edition. Cambridge University Press, 2003

A. Dimitriadis, M. Windhouwer, A. Saulwick, R. Goedemans and T. Bir6 (2009). How to integrate
databases without starting a typology war: The Typological Database System. In S. Musgrave,
M. Everaert and A. Dimitriadis (eds), The Use of Databases in Cross-Linguistic Studies. Mouton
de Gruyter, March 2009.

G. van Emde Boas and S. Ilinsky (2009). Backbase 4 RIA Development. Packt Publishing, 2009.

eXist Solutions (2016). eXistdb - The Open Source Native XML Database. exist-db.org. Accessed on
June 15, 2016.

International Organization for Standardization (ISO, 2006a). Information technology — Document
Schema Definition Language (DSDL) — Part 3: Rule-based validation — Schematron. ISO/IEC
19757-3. Geneva, June 1, 2006.

International Organization for Standardization (ISO, 2006b). Information technology — Docu-
ment Schema Definition Language (DSDL) — Part 4: Namespace-based Validation Dispatching
Language (NVDL). ISO/IEC 19757-4. Geneva, June 1, 2006.

International Organization for Standardization (ISO, 2008). Information technology — Document
Schema Definition Language (DSDL) — Part 2: Regular-grammar-based validation — RELAX
NG. ISO/IEC 19757-2. Geneva, December 15, 2008.

LIDER project (2016). Linguistic Linked Open Data, linguistic-lod.org. Accessed on January 18,
2016.

M. Windhouwer and A. Dimitriadis (2008). Sustainable operability: Keeping complex resources
alive. In A. Witt, G. Rehm, T. Schmidt, K. Choukri and L. Burnard (eds), Proceedings of the
LREC 2008 Workshop Sustainability of Language Resources and Tools for Natural Language
Processing (SustainableNLP08). Marrakech, Morocco, May 31, 2008.

World Wide Web Consortium (W3C, 2007). M. Kay (ed), XSL Transformations (XSLT) Version 2.0.
January 23, 2007.

World Wide Web Consortium (W3C, 2010). S. Boag, D. Chamberlin, M.E. Fernandez, D. Florescu,
J. Robie and J. Siméon (eds), XQuery 1.0: An XML Query Language (Second Edition). December
14, 2010.

World Wide Web Consortium (W3C, 2016a). Web Ontology Language (OWL) w3.0org/OWL.
Accessed on June 15, 2016.

World Wide Web Consortium (W3C, 2016b), SKOS Simple Knowledge Organization System.
w3.org/skos. Accessed on June 15, 2016.

http://exist-db.org
http://linguistic-lod.org
http://w3.org/OWL
http://w3.org/skos

	Chapter 11: Curating the Typological Database System
	11.1 Introduction
	11.2 The Architecture of the Typological Database System
	11.2.1 Integrated Data Documentation Format
	11.2.2 An IDDF-based Application Programming Interface
	11.2.3 A New Web User Interface

	11.3 Conclusion
	Acknowledgements
	References

