
UP 033 odijk odijk_printer 2017/12/15 15:57 Page 259 #279

CHAPTER 21

Beyond Counting Syntactic Hits
Erwin R. Komen

Radboud University Nijmegen, SIL-International, E.Komen@ru.nl

ABSTRACT
Linguists who would like to make use of the increasing number of syntactically annotated
text corpora in their research can use existing tools to �nd and count instances of the syntac-
tic constructions they are interested in. So�ware supporting linguists in their work should
also make it possible to build databases of search results where each hit is accompanied by
a number of calculated (or manually addable) features. The stand-alone CorpusStudio pro-
gram is able to provide this help, since it allows queries and feature calculations to be de�ned
in the XQuery language. The web application of CorpusStudio, which is still under develop-
ment, aims to have comparable functionality but with an easier accessibility. The main aim
of this chapter is to demonstrate why so�ware should go beyond counting syntactic hits.

Keywords: syntax, corpus research, XQuery

21.1 Introduction

A linguist who is interested in studying a particular syntactic construction in a language can do
so by manually or programmatically looking through a number of texts in that language. It is the
availability of syntactically annotated texts that makes this latter programmatic approach possible.

There are quite a number of programs and even web applications linguists can use to �nd
instances of the syntactic construction they are interested in.1 Studies conducted by linguists,
however, involve more than locating constructions that satisfy particular conditions. Two other
important aspects of a study are: (a) keeping a number of related searches together in a search

1 Some of these programs are mentioned later on in this article.

How to cite this book chapter:
Komen, E. R. 2017. Beyond Counting Syntactic Hits. In: Odijk, J and van Hessen, A. (eds.) CLARIN in the

Low Countries, Pp. 259–268. London: Ubiquity Press. DOI: https://doi.org/10.5334/bbi.21. License:
CC-BY 4.0

mailto:E.Komen@ru.nl
https://doi.org/10.5334/bbi.21

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 260 #280

260 CLARIN in the Low Countries

‘project’ that can be stored and retrieved to improve replicability, and (b) annotating search results
automatically or semi-automatically with information that can be gleaned from the search hits.
While the latter activity is an integral part of corpus linguists’ everyday research, little support in
terms of so�ware is available.

This chapter discusses and exempli�es the kind of facilities beyond those for counting syntactic
hits that linguists would greatly appreciate in syntactic corpus research programs. The observa-
tions discussed are based on experience with the CorpusStudio and Cesax programs, which have
so far been used in historical linguistics, second language acquisition and information structure
research for Indo-European (Dutch, English, Welsh) as well as Caucasian (Chechen, Lak, Lezgi)
languages (Komen 2014; Komen et al. 2014; Los and Dreschler 2012; van Vuuren 2013). The Cor-
pusStudio application allows researchers to formulate and execute syntactic searches, store them
in a ‘Corpus Research Project’, and annotate the search results with features that are determined
programmatically.

21.2 The Linguist

I would like to underscore the idea that linguists want to do more than �nding syntactic construc-
tions by considering what kinds of questions linguists ask when studying the syntax of a particular
language. Linguistics is a broad research area, but I would like to focus on the research on syn-
tax and information structure where annotated corpora are used. The important questions that
researchers in this area ask are summarised in (1):

(1) a. Under what circumstances does construction ‘x’ occur, and, coupled with this question,
what are the distinguishing properties of this construction?2

b. How does the occurrence of construction ‘x’ depend on genre, dialect or author, and how
did the construction develop over time?

Finding instances of construction ‘x’ and counting them in a particular corpus is a good �rst step
towards answering these questions, but more should and could be done. Let me illustrate this with
a real-life research question. Consider the examples from the ‘standard’ conditional construction
in Dutch in (2a) and the alternative conditional inversion in (2b).

(2) a. Nou als je niet kijkt op een paar miljoen
well if you not look on a few million
dan kun je dus stellen dat de eerste drie kernactiviteiten
then could you therefore posit that the �rst three nuclear.activities
nagenoeg evenveel budget ter beschikking hebben.
almost equal budget to disposal have
‘If a few million aren’t too important, then one could say that the �rst three activities have
more or less the same budget.’ [fn000056:0047]

b. Hee� u de partners gevonden dan begint het eigenlijk pas
have you the partners found then starts it actually only
want dan moet er een projectvoorstel geschreven worden.
because then must there a project.proposal written become

2 I use the term ‘construction’ here to denote a constellation of syntactic units. Any construction in this sense can be
defined by making use of hierarchy and linear order of units that are identified by syntactic labels, possibly together
with limitations on the content of these units.

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 261 #281

Beyond Counting Syntactic Hits 261

‘It is only when the partners have been found, that the matter actually starts. That’s when
the project proposal needs to be written.’ [fn000056:0147]

Suppose that linguists want to investigate the occurrence of the conditional inversion as opposed
to the standard if-then conditional: they would at least want to know the numbers, so that they can
�gure out whether one of the two constructions is more or less exceptional. The numbers can be
found by searching through syntactically annotated texts. Tools that facilitate syntactic searches
are, for instance, the web applications PaQu3 (Parse and Query; see chapter 23) and GrETEL4 (see
chapter 22) as well as the Windows version of CorpusStudio.5 All three search engines handle the
corpus of Dutch texts in which the examples above occur: the Corpus of spoken Dutch (Oostdijk
et al., 2002).6

It should be obvious from the examples in (2) that the two conditional syntactic constructions
di�er.7 If linguists want to �nd all relevant results, they would probably need to write two di�erent
queries. Even if the researchers’ focus is not on the ‘standard’ conditional, they would want to have
the number of their occurrences for the sake of comparison. The two di�erent queries do, however,
belong to the same ‘research project’, which is why it would be of great help for linguist-users of the
search so�ware to have these queries stored together – and they could do with some metadata too,
identifying what the goal of the queries is, for instance. One possibility to reach this goal would be
to keep searches and documentation in di�erent �les, but store them in a single project directory.
This is a good approach, but keeping all relevant information together in one structured �le (e.g.
in XML format) makes it even more transparent, prevents potential errors and promotes clarity.

In line with the general research question in (1), linguists would like to know under which cir-
cumstances the conditional inversion occurs. They want to know whether its occurrence depends
on linguistic factors, as in (1a), extra-linguistic factors, as in (1b), or a combination of the two.
Table 21.1 identi�es a number of linguistic and extra-linguistic features that linguists would
probably want to have for each hit.

How do linguists investigating the conditional inversion enrich their list of hits with the informa-
tion they need? They could look through all the hits identi�ed by a syntactic search program, and
then �nd all the relevant information for each of the hits manually, by checking the texts. But such
an approach is error-prone, and, if there are no other reasons to check the texts manually, should
be avoided. As for a programmatic approach, a few authors have suggested that XQuery could be
used to extract the information that is required (Bouma, 2008; Bouma and Kloosterman, 2007; Yao
and Bouma, 2010). The XQuery language is well suited to this task, since it allows the user to work
with variables and functions (Boag et al., 2010). The language would, however, form an obstacle for
linguists who are less familiar with computer languages. Applications that support XQuery, then,
should consider supporting easier query de�nition methods for some, while allowing the use of
XQuery’s fuller capabilities for others.

Suppose, now, that the features mentioned in Table 21.1 have been determined for each of the
hits. This gives the linguists basic data to do their research. They would be much helped if it were
possible to divide the results into groups, the categories of which depend on the features that are

3 http://portal.clarin.nl/node/4182
4 http://nederbooms.ccl.kuleuven.be/eng/
5 http://erwinkomen.ruhosting.nl/software/CorpusStudio
6 Other systems that facilitate syntactic search queries are outside the scope of this chapter. Among them is the

CLARIN-developed PML Tree Query web application, which aims for dependency treebanks and makes use of the
PML query language (Mı́rovský et al., 2010)

7 No numerical results of the searches discussed here are given, since the focus of this chapter is not on this particular
syntactic phenomenon, but on the question of how best to help a linguist wanting to research this and similar
phenomena.

http://portal.clarin.nl/node/4182
http://nederbooms.ccl.kuleuven.be/eng/
http://erwinkomen.ruhosting.nl/software/CorpusStudio

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 262 #282

262 CLARIN in the Low Countries

Type Feature Value

Linguistic

TenseType Is this a periphrastic (‘hee� ... gevonden’) or a simple
tense?

FirstSize The size of the �rst part of the condition (the protasis).
Pre The kind of element (if any) preceding the conditional

(e.g. the nou ‘well’ in (2a)).
ParaPosition The position within the paragraph (start, middle, end).
FirstStatus The information status of the �rst part of the condition:

does it link back to the preceding context or is it new?

Extra-linguistic

AuthorName Who is the author (perhaps the use of the conditional
inversion is linked to a limited number of authors?)?

AuthorAge Would the conditional inversion be an innovation
(young authors) or a remnant from the past (old
authors)?

AuthorDialect Is the conditional inversion linked to particular
dialects?

TextType Is it linked to a particular type of text?
TextDate The publication date of the text.

Table 21.1: Features that could be relevant for choosing a conditional inversion.

calculated. That would give them a fast way to check the hypotheses that underlie the determination
of the features in the �rst place.

It would also be nice if they could divide their search into two parts. In a �rst step, they could �rst
look for instances of the conditional inversion and the standard conditional, enrich them with the
features listed in Table 21.1, and store them in some kind of database. They could manually check
and adapt features such as ‘ParaPosition’ and ‘FirstStatus’, since these may not be determinable
automatically with enough accuracy. They would need to have access to the hits in their context at
this point.

The next step would be to formulate and test hypotheses that determine the choice between a
standard conditional and a conditional inversion. This step would require to take the data in the
result database from the previous step as input. It would be quite natural to implement this step by
using the same machinery as in the previous step.

Once all of this has been done, the linguists have quite likely reached a point where they want to
make use of programs such as R or SPSS to test statistical models of their hypotheses. The corpus
research so�ware should allow the data to be exported in such a way that it can be used by statistics
programs.

The facilities that corpus research so�ware should provide to help linguists address the kind of
research questions in (1) are summed up in (3).

(3) a. Find and count instances of syntactic constructions.
b. Provide �gures that allow for the calculation of relative frequencies: the number of words,

clauses, and texts that have been searched.8

c. Store the search results separately, so that features can be added to them.
d. Calculate required features automatically as much as possible.

8 Calculation of relative frequencies is left to the linguist, since the point of reference by which absolute frequencies
should be divided may be taken differently depending on the purpose.

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 263 #283

Beyond Counting Syntactic Hits 263

e. Allow for researchers to adjust or add features manually.
f. Allow results to be divided into categories that are data-dependent.
g. Allow results to be divided into groups that are metadata-dependent.
h. Allow using a collection of (annotated) results as input for one or more other queries.
i. Have the queries and the feature calculations that belong to one research project together

in one place, allowing interchange and replicability.
j. Allow users to enrich texts with features.

k. Allow exporting the data for use in statistics programs and for publications.

Facility (3a) looks for and �nds instances of the construction, and (3b) adds information to allow
for a good quantitative study. The facilities in (3c–e) allow researchers to equip each ‘hit’ with as
many features as are needed to help answer the research question. Facilities (3f–g) help provide
more insight into how the results are divided in terms of aspects of the data itself or the metadata.
Facility (3i) promotes the exchange of research projects and contributes to replicability. Facility (3c)
allows for the process in (3a–h) to be divided into two parts: one where a database with hit-feature
combinations is created, and one where the results in this database are divided into adjustable
groups. Facility (3k) provides the connection with a possible next step: a statistical analysis.

21.3 Current So�ware

So�ware that addresses points (3a,g) partly or completely has been made or continues to be made.
The programs produced or enhanced for CLARIN-NL and CLARIN Flanders are no exception.
A consortium of organisations and universities developed the Corpus Hedendaags Nederlands
tool and later the OpenSONAR tool (Oostdijk et al., 2002; Reynaert et al., 2014).9 The Nederlab
web application provides access to a huge (and growing) amount of Dutch texts (Brugman et al.,
2016).10 All interfaces address (3a,g), some address (3f) partly, but none of these currently feature
syntactic searches.

21.3.1 Web-based CLARIN Tools for Syntactic Research

Two tools that have been supported by CLARIN that do allow for some kind of syntactic search
are PaQu and GrETEL. PaQu has been developed by the University of Groningen.11 It not only
incorporates online access to the Alpino parser of Dutch, but also provides search interfaces that
allow the user to de�ne queries in XPath. Satisfying facility (3a), search results can be downloaded
and are accompanied by some metadata.

The GrETEL tool allows searches in a number of di�erent Dutch corpora as well as in Afrikaans
corpora.12 Its user interface vastly di�ers from that of PaQu: searches are formed on the basis of
a real-life example provided by the linguist. This means that researchers do not need to have in-
depth knowledge of what goes on inside the search engine. Augustinus et al. (2012) explain that
their search engine uses XPath for the actual searches. The XPath code produced by GrETEL can,
in fact, be used without changes in the PaQu web interface. The GrETEL application addresses
point (3a), it allows the downloading of all the hits, and it has an option that provides a table with
the counts divided per treebank; this table partly addresses facilities (3b,g).

9 opensonar.clarin.inl.nl and opensonar-cgn.science.ru.nl
10 http://www.nederlab.nl
11 http://www.let.rug.nl/alfa/paqu
12 http://nederbooms.ccl.kuleuven.be/eng/gretel

opensonar.clarin.inl.nl
opensonar-cgn.science.ru.nl
http://www.nederlab.nl
http://www.let.rug.nl/alfa/paqu
http://nederbooms.ccl.kuleuven.be/eng/gretel

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 264 #284

264 CLARIN in the Low Countries

21.3.2 Windows-based CorpusStudio and Cesax

Two Windows-based programs combine into a set of tools that address most of the ambitious goals
de�ned in (3): CorpusStudio and Cesax (Komen et al., 2013). Figure 21.1 shows how the programs
cooperate.

The CorpusStudio program works with Corpus Research Projects (CRPs), XML de�nitions of
queries, and metadata that together describe a research project. It allows the de�ning of searches in
XQuery, which means that users can de�ne variables and functions and use these in their queries.
CorpusStudio works on XML text corpora that are located on the user’s computer, addressing
(3a) fully. The search results it provides contain the total number of words and sentences of the
texts being searched, allowing for (3b), the calculation of relative frequencies. Dividing the results
in a data-dependent way – (3f) – is possible through a CorpusStudio-speci�c built-in XQuery
function. Division of the results on the basis of metadata is only possible to a limited extent, so
point (3g) is addressed only partly. The results can be turned into a separate XML database, and
each ‘hit’ can be accompanied by user-de�nable features, addressing (3c). The extensive capabil-
ities of the XQuery language, and the fact that it allows for user-de�ned functions in particular,
facilitate calculation of such hit-dependent features in a comprehensive but relatively user-friendly
way, as per (3d). The Cesax program allows for working with the kinds of result databases pro-
duced by CorpusStudio, so that the features can be adapted manually as per (3e). Points (3h) and
(3j) are also taken care of by CorpusStudio and Cesax respectively. And where GrETEL o�ers an
example-based de�nition of queries, Cesax and CorpusStudio contain a ‘query wizard’ that allows
users to base a query on key elements of an example sentence in the corpus. Keeping queries, fea-
ture calculations, and metadata together in one research project, as indicated by (3i), is addressed
fully by CorpusStudio (this was actually one of the main reasons to write the program in the �rst
place).

The stand-alone version of CorpusStudio does, unfortunately, come with a number of short-
comings. It is platform-dependent, since it only works on Windows. Its speed depends very much
on the characteristics of the computer on which it is running, but it is not very fast. And while
CorpusStudio could be adapted to work with XML texts in the FoLiA format, this is not facilitated

CorpusStudio

Results
(xml)

(Locations +
features)

Database
(xml)

(Locations +
text +

features)

Query
executor

Dbase
extractor

Query

Feature calculation
(Xquery)

Example locator
(Xpath, Xquery)

Cesax

Database editor (xml)
(Locations + text + features)

Original text
(context + translation)

Syntax trees

Query
wizard

Research Question

Figure 21.1: Cooperation between CorpusStudio and Cesax.

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 265 #285

Beyond Counting Syntactic Hits 265

directly.13 A disadvantage related to its nature as a stand-alone program is the fact that a copy of
the corpus to be researched needs to be held on each user’s own machine.14 Where text corpora are
being adapted, one may quickly lose track of where the most up-to-date version is located. Most of
these disadvantages are alleviated in the web-version of CorpusStudio.

21.4 The Web Application

The stand-alone CorpusStudio Windows program has partly been re-written as a web application.15

The key components of the web application are shown in Figure 21.2.16

The core of the application is the ‘Query Executor’, a Java application that accepts a Corpus
Research Project and executes the XQuery code from that project on a corpus of XML texts (in
the FoLiA or the TEI-Psdx format).17 The CrpxProcessor divides the query execution workload
over the available processors; the more processors, the faster the query execution. The CrpxPro-
cessor can be run as a stand-alone application, but it is used as part of a web service within the
CorpusStudio web application: the /crpp search service.

User informationProject information

Definition
Editor

Query
Editor

Constructor
Editor

Result viewer

Metadata
Editor

Definitions

Queries

Corpus
Research

Project
(.crpx)

Search service: crpp

Query
Executor

Database
Creator

Output Monitor

Results
(.xml)

Corpus
Research
Database

(.xml)

Table
Viewer

Result
Viewer

Documents
(.xml)

xml

xml

xml

xml

xml

Input
Selector

json
Status

xml

json

Database
feature editor

Result
Grouping

Standard
grouping

(.json)

Grouping
Viewer

Corpus
Viewer

Result database

Result dbase
Viewer

Result dbase
Editor

Figure 21.2: Principal components of the CorpusStudio web application.

13 Texts in the FoLiA format can be converted to the TEI-Psdx format in Cesax and then processed.
14 This is a particular shortcoming of CorpusStudio, not of stand-alone programmes as such. A reviewer pointed out

that the Dact programme, for instance, is a stand-alone cross-platform application that supports working on remote
corpora with remote parsing servers (van Noord et al., 2013). See http://rug-compling.github.io/dact/

15 http://www.clarin.nl/node/2095
16 The source code of the application is available at https://github.com/ErwinKomen.
17 A number of other formats can be converted into FoLiA or Psdx through the Cesax programme.

http://rug-compling.github.io/dact/
http://www.clarin.nl/node/2095
https://github.com/ErwinKomen

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 266 #286

266 CLARIN in the Low Countries

Figure 21.3: Query input wizard.

The user of the CorpusStudio web application works with the /crpstudio service; this pro-
vides the interface between the user on the one hand, and the server on the other hand. The
server contains the syntactically annotated XML text corpora that can be searched, the user’s
Corpus Research Projects (.crpx �les), the user’s search results and possibly the user’s result
databases. The /crpstudio service allows for the de�nition of the information stored in the Corpus
Research Projects: the metadata of the project (Metadata Editor); the XQuery variables, de�ni-
tions and queries (De�nition and Query Editor); the hierarchy between the queries (Constructor
Editor); and the features that need to be calculated if the output is a database (Database feature
editor).

The ‘corpora’ part of the /crpstudio service lists the corpora that are available in the web applica-
tion (the Corpus Viewer) and allows de�ning metadata-dependent result groupings. The ‘dbases’
part of the service makes interaction with the result databases possible. Once a research project has
been executed, its results are available in the result viewer, which also allows downloading them.

The version of the CorpusStudio web application that has been delivered at the end of 2015
still su�ers a number of limitations compared to its stand-alone Windows counterpart; there are,
for instance, limitations on metadata-dependent grouping of results and on working with result
databases The implementation of a query wizard has started in 2016 and consists of two phases:
(1) a query input wizard that allows easy input of queries, which are subsequently translated into
XQuery, and (2) a system level that forms a shell around XQuery, allowing users to de�ne and adapt
queries without the need for them to know any XQuery (queries are translated into XQuery only
just before execution).

The query input wizard is currently being implemented, and Figure 21.3 gives an idea of its
intermediate state. The main idea is that the user can: (1) name and identify constituents and their
relations towards one another, (2) stipulate additional relations between the named constituents,
and (3) formulate feature de�nitions on top of the standard ones (the latter of which are the labels
of each of the identi�ed constituents, and the text of these constituents). More information on the
current status of the program, including the second phase (of easy access to XQuery), will be made
available online.18

18 See the ‘About’ section of the web application: http://www.clarin.nl/node/2095.

http://www.clarin.nl/node/2095

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 267 #287

Beyond Counting Syntactic Hits 267

Most importantly, the program has extended the CLARIN infrastructure with a syntactic
research tool that allows interested linguists to make use of points (3a–i) in their research19

21.5 Discussion and Conclusions

Current tools available to linguists who are interested in doing syntactic research on annotated
corpora allow �nding and counting syntactic constructions. This chapter takes the conditional
inversion as an example, and shows that more so�ware help can be given to address the kinds
of questions a linguist asks. This chapter argues that a researcher would want to annotate all the
instances of constructions like the standard conditionals and the conditional inversion with
features, taking the research beyond counting syntactic hits.

Users of the stand-alone CorpusStudio have already shown that the availability of this kind
of sofware in�uences the research process itself: instead of focusing on �nding one particular
syntactic construction, the creation of feature databases that can again serve as the input to the
search process leads to initially broader searches that make use of quite speci�c feature calculation
functions.

So�ware that facilitates the intended process could make use of the query language XQuery, since
it not only allows searching through syntactically annotated corpora, but also allows calculating
the values of the features a linguist may be interested in. The existing CorpusStudio stand-alone
Windows program makes use of this query language but has the drawbacks of most stand-alone
applications. It is platform-dependent and does not easily help other linguists to work with the
same corpus. This chapter mentions the �rst version of the CorpusStudio web application, a web-
based version of the Windows program. While it does not yet o�er all the facilities a researcher
would like to make use of, it brings the kind of corpus-based syntactic research advocated in this
chapter a step closer to users of the CLARIN infrastructure.

Acknowledgements

I am grateful to CLARIN-NL, who shared my vision and �nanced the development of the web
application. My Radboud colleagues Meta Links and Sanne van Vuuren have provided useful com-
ments on CorpusStudio and shared their ideas about the web application with me. I owe a lot of
thanks for fruitful discussions on technical aspects to my Meertens Institute colleagues Matthijs
Brouwer, Erik Tjong Kim San, Hennie Brugman, and Jan Pieter Kunst.

References

Augustinus, Liesbeth, Vandeghinste, Vincent & van Eynde, Frank. 2012. ’Example-based tree-
bank querying’. Paper presented at Eighth international conference of language resources and
evaluation (LREC2012), Istanbul, Turkey.

Boag, Scott, Chamberlin, Don, Fernández, Mary F., Florescu, Daniela, Robie, Jonathan & Siméon,
Jérôme. 2010. XQuery 1.0: An XML Query Language (Second Edition): W3C Recommendation,
<http://www.w3.org/XML/Query/#specs>.

19 I leave a detailed discussion of the CorpusStudio web application to another platform, since the main goal of this
chapter is to show that syntactic research would be served by software that goes beyond counting hits. Much of the
information one would be interested in is available in the CorpusStudio manual. The application is not a typical
database application: it searches through physical texts. The search speed of the web application is proportional to
the number of processor cores the server it runs on makes available, since the search of each text takes place in a
separate thread. Eight cores give a speed improvement of 7.8 compared to one core. The speed of the benchmark
project (‘V2 test versie11’) running on the Old English YCOE corpus (1.5 million words) is 18 min, 49 sec on the
Windows stand-alone application (2 GHz processor), while it takes 22.64 sec on the web application that makes use
of 20 cores.

http://www.w3.org/XML/Query/#specs

UP 033 odijk odijk_printer 2017/12/15 15:57 Page 268 #288

268 CLARIN in the Low Countries

Bouma, Gosse. 2008. XML information extraction with Xquery: processing wikipedia and Alpino
trees. Groningen: Information science, university of Groningen.

Bouma, Gosse & Kloosterman, Geert. 2007. Mining syntactically annotated corpora with XQuery.
In Proceedings of the Linguistic Annotation Workshop. Prague, Czech Republic: Association for
Computational Linguistics.

Brugman, Hennie, Reynaert, Martin, Sijs, Nicoline van der, Stipriaan, René van, Tjong Kim Sang,
Erik, Bosch, Antal van den, Kunst, Jan Pieter, Zeeman, Rob, Kooij, Dieuwertje, Brussee, Ineke,
Brouwer, Matthijs, Kemps-Snijders, Marc & Bennis, Hans. to appear. Nederlab: towards a single
portal and research environment for diachronic Dutch text corpora. In Language resources and
evaluation conference (LREC 2016). Portorož (Slovenia).

Komen, Erwin R. 2013. Corpus databases with feature pre-calculation. In Proceedings of the
twel�h workshop on treebanks and linguistic theories (TLT12). Sandra Kübler, Petya Osen-
ova & Martin Volk (eds), 85–96. So�a, Bulgaria: The institute of information and commu-
nication technologies, Bulgarian academy of sciences, <http://www.bultreebank.org/TLT12/
TLT12Proceedings.pdf>.

Komen, Erwin R. 2014. Chechen extraposition as an information ordering strategy. In Infor-
mation structure and reference tracking in complex sentences. Rik van Gijn, Dejan Matić,
Jeremy Hammond, Saskia van Putten & Ana Vilacy Galucio (eds), 99–126. Amsterdam: John
Benjamins.

Komen, Erwin R., Hebing, Rosanne G. A., van Kemenade, Ans & Los, Bettelou. 2014. Quantifying
information structure changes in English. In Information Structure and Syntactic Change in Ger-
manic and Romance Languages. Kristine Gunn Eide & Kristin Bech (eds), 81–110. Amsterdam,
New York: John Benjamins.

Los, Bettelou & Dreschler, Gea. 2012. The loss of local anchoring: From adverbial local anchors
to permissive subjects. In Rethinking Approaches to the History of English. Terttu Nevalainen &
Elizabeth Closs Traugott (eds), 859–872. New York: Oxford University Press.

Mı́rovský, Jiř́ı, Mladová, Lucie & Žabokrtský, Zdeněk. 2010. ’Annotation tool for discourse in
PDT’. Paper presented at Proceedings of the 23rd International Conference on Computational
Linguistics: Demonstrations.

Oostdijk, Nelleke, Goedertier, W. , Eynde, F. van, Boves, Lou , Martens, J.-P. , Moortgat, M. &
Baayen, Harald. 2002. ’Experiences from the Spoken Dutch Corpus Project’. Paper presented at
Proceedings of the 3rd international conference on language resources and evaluation (lrec2002),
Las Palmas.

Reynaert, Martin, Camp, Matje van de & Zaanen, Menno van. 2014. ’OpenSoNaR: user-driven
development of the SoNaR corpus interfaces’. Paper presented at Proceedings of the 25th
International Conference on Computational Linguistics (Coling 2014), Dublin, Ireland.

van Noord, Gertjan, Bouma, Gosse, Van Eynde, Frank, de Kok, Daniël, van der Linde, Jelmer,
Schuurman, Ineke, Tjong Kim Sang, Erik & Vandeghinste, Vincent. 2013. Large Scale Syntactic
Annotation of Written Dutch: Lassy. In Essential Speech and Language Technology for Dutch. P.
Spyns & J. Odijk (eds), 147–164.

van Vuuren, Sanne. 2013. Information structural transfer in advanced Dutch EFL writing: a cross-
linguistic longitudinal study. In Linguistics in the Netherlands 2011 [AVT30]. Suzanne Aalberse
& Anita Auer (eds), 173–187. Amsterdam: John Benjamins.

Yao, Xuchen & Bouma, Gosse. 2010. ’Mining Discourse Treebanks with XQuery’. Paper presented
at Ninth international workshop on treebanks and linguistic theories (TLT9), Tartu, Estonia.

http://www.bultreebank.org/TLT12/TLT12Proceedings.pdf
http://www.bultreebank.org/TLT12/TLT12Proceedings.pdf

	Chapter 21: Beyond Counting Syntactic Hits
	21.1 Introduction
	21.2 The Linguist
	21.3 Current Software
	21.3.1 Web-based CLARIN Tools for Syntactic Research
	21.3.2 Windows-based CorpusStudio and Cesax

	21.4 The Web Application
	21.5 Discussion and Conclusions
	Acknowledgements
	References

